
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Optimal Oblivious Routing With Concave
Objectives for Structured Networks

Kanatip Chitavisutthivong , Student Member, IEEE, Sucha Supittayapornpong , Member, IEEE,
Pooria Namyar , Mingyang Zhang, Minlan Yu , and Ramesh Govindan , Fellow, IEEE

Abstract— Oblivious routing distributes traffic from sources to
destinations following predefined routes with rules independent
of traffic demands. While finding optimal oblivious routing with
a concave objective is intractable for general topologies, we show
that it is tractable for structured topologies often used in data-
center networks. To achieve this, we apply graph automorphism
and prove the existence of the optimal automorphism-invariant
solution. This result reduces the search space to targeting the
optimal automorphism-invariant solution. We design an iterative
algorithm to obtain such a solution by alternating between convex
optimization and a linear program. The convex optimization
finds an automorphism-invariant solution based on representative
variables and constraints, making the problem tractable. The
linear program generates adversarial demands to ensure the
final result satisfies all possible demands. Since the construction
of the representative variables and constraints are combinato-
rial problems, we design polynomial-time algorithms for the
construction. We evaluate the iterative algorithm in terms of
throughput performance, scalability, and generality over three
potential applications. The algorithm i) improves the throughput
up to 87.5% for partially deployed FatTree and achieves up to
2.55× throughput gain for DRing over heuristic algorithms, ii)
scales for three considered topologies with a thousand switches,
iii) applies to a general structured topology with non-uniform
link capacity and server distribution.

Index Terms— Oblivious routing, datacenter networks, convex
optimization, graph automorphism.

I. INTRODUCTION

TOPOLOGY design for datacenter networks has gained
attention due to the need to construct high capacity dat-

Manuscript received 16 November 2022; accepted 6 March 2023; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor N. Karamchandani.
This work was supported in part by the Office of the Permanent Sec-
retary, Ministry of Higher Education, Science, Research and Innovation
(OPS MHESI), Thailand Science Research and Innovation (TSRI), and the
Vidyasirimedhi Institute of Science and Technology (VISTEC) under Grant
RGNS 65-216; in part by the U.S. National Science Foundation under Grant
CNS-1955422; and in part by ACE Center for Evolvable Computing, one of
the seven centers in JUMP 2.0, a Semiconductor Research Corporation (SRC)
Program Sponsored by the Defense Advanced Research Projects Agency
(DARPA). The early version of this work appeared in the Proceedings
of IEEE INFOCOM 2022 [DOI: 10.1109/INFOCOM48880.2022.9796682].
(Corresponding author: Sucha Supittayapornpong.)

Kanatip Chitavisutthivong and Sucha Supittayapornpong are with the School
of Information Science and Technology, Vidyasirimedhi Institute of Science
and Technology, Rayong 21210, Thailand (e-mail: sucha.s@vistec.ac.th).

Pooria Namyar is with the Department of Electrical Engineering, University
of Southern California, Los Angeles, CA 90007 USA.

Mingyang Zhang and Ramesh Govindan are with the Department
of Computer Science, University of Southern California, Los Angeles,
CA 90007 USA.

Minlan Yu is with the Department of Computer Science, Harvard University,
Cambridge, MA 02138 USA.

Digital Object Identifier 10.1109/TNET.2023.3264632

acenters at low cost and low management complexity [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. Although several
topologies have been proposed, only the folded-Clos family of
topologies [1], [2], [3], [4] achieves designed capacity with
existing routing solutions including Equal-Cost Multi Path
(ECMP) [13] and Valiant Load-Balancing (VLB) [14], [15].
For topology designs that deviate from folded-Clos [6], [7],
[8], [9], [10], [11] the design of scalable routing algorithms
that can achieve their designed capacity is an open question.

Routing inside datacenter networks can be categorized into
traffic-aware routing and oblivious routing. Traffic-aware rout-
ing reduces network congestion and improve overall through-
put by regularly adjusting routes and fractions of traffic
demands over the routes according to queue occupancy or
traffic demands [6], [7], [16]. These advantages come at a
cost of specialized hardware and routing complexity. Alter-
natively, oblivious routing is much simpler. Traffic demands
are distributed according to predefined routes and shares of the
demands over each route. In particular, the routing is oblivious
to the current traffic demand, so regular configuration of routes
is unnecessary [15]. Because of this simplicity, oblivious
routing, including ECMP and VLB, is deployed in several
large-scale datacenter networks [1], [2], [3], [4]. A real-world
measurement at Facebook also suggests oblivious techniques
work well leaving little room for improvement using advanced
traffic-aware routing [17].

Although existing oblivious routing is widely deployed,
it achieves designed capacity only for the folded-Clos
and clique topologies. Specifically, ECMP can achieve the
designed capacity of folded-Clos topologies including Fat-
Tree [1], Google’s Jupiter [3] and Facebook’s Fabric [4]. VLB
achieves designed capacity for a clique topology and works
reasonably well in Microsoft’s VL2 [2]. However, recent
datacenter topology designs have moved away from the folded-
Clos family [8], [9], [10], [11], [12] and, for these, existing
oblivious routing approaches cannot be used to achieve their
designed capacity.

Of these new designs, highly structured topologies, such as
FatClique [11] and DRing [12] (Fig. 1), are more manageable
(i.e., they are easier to install and expand) than random
topologies [8], [9]. For these structured topologies, this paper
develops a general oblivious routing algorithm that relies
on hardware support for multi-path routing (WCMP) already
available in commodity switches.

For any network, oblivious routing can be formulated
as a robust multi-commodity flow problem with a concave

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5471-2271
https://orcid.org/0000-0001-8016-4918
https://orcid.org/0000-0001-7704-5440
https://orcid.org/0000-0002-2381-0212
https://orcid.org/0000-0001-8311-8853
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796682

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. Examples of highly structured topologies.

objective in which the number of constraints grows factorially
with the number of switches in the network. Even for a small
network, the problem size, in terms of numbers of variables
and constraints, can easily overwhelm an optimization solver’s
memory and renders the problem intractable.

For structured topologies, however, we show that we can use
the topological structure and graph automorphism to reduce
the problem size to the point that is tractable for any off-the-
shelf solver running on commodity hardware.

To do this, we first prove the existence of an optimal solu-
tion that is invariant to automorphism–the solution is a permu-
tation of itself. Based on this result, we reduce the search space
of an optimal solution to the solution that is automorphism-
invariant. Using graph automorphism, we formulate a robust
multi-commodity flow problem with significantly fewer vari-
ables and constraints to target this optimal solution. While the
formulation has robust constraints, we observe that the optimal
solution is in a much lower dimensional space compared to the
original robust formulation, due to the automorphism-invariant
property of the optimal solution. Therefore, we only need
to consider a smaller subset of traffic demands instead of
considering all possible demands.

This leads to the design of an iterative algorithm that
alternates between convex optimization and a linear program.
The convex optimization finds an automorphism-invariant
routing solution. The linear program generates adversarial
traffic demands to make sure the end result of the iterative
algorithm is optimal and satisfies all possible traffic demands.
Both optimization problems are based on representative vari-
ables and constraints, which significantly reduce the problem
sizes. However, the construction of representative variables
and constraints is a combinatorial problem, associated with
the exponentially large number of automorphisms. We design
polynomial-time algorithms to construct these representatives
by utilizing the generators of the automorphisms.

We evaluate our iterative algorithm in terms of throughput,
scalability, and generality over three potential applications. i)
The algorithm improves the throughput up to 87.5% over a
heuristic algorithm for partially deployed FatTree topologies.
It also yields up to 2.55× throughput gain for DRing topolo-
gies. ii) The algorithm is scalable and provides the optimal
oblivious routing solution for FatClique, DRing, and partially
deployed FatTree topologies with a thousand switches. iii) We
demonstrate the generality of the algorithm by considering a
structured topology with non-uniform link capacity and server
distribution.

The contributions of this work are threefold, which leads to
a more general oblivious routing formulation supporting tradi-
tional linear objective functions and fairness-aware functions.
• We prove the existence of an automorphism-invariant

optimal solution of an oblivious routing problem with

a concave objective in every structured topology. This
reduces the search space of optimal solutions.

• We design the iterative algorithm that targets the
automorphism-invariant optimal solution using graph
automorphism. The algorithm is tractable in comparison
to solving the intractable oblivious routing formulation.

• We develop the polynomial-time construction of the algo-
rithm and illustrate three applications of the algorithm.

The paper is organized as follows. Section II presents
related works. Section III models a datacenter network and
formulates the oblivious routing problem. Section IV proves
the existence of the optimal solution that is automorphism
invariant. Section V uses this insight to develop the iterative
algorithm targeting the automorphism-invariant optimal solu-
tion. Section VI provides an efficient construction of represen-
tative variables and constraints. Our approach is evaluated in
Section VII, and Section VIII concludes our work.

II. RELATED WORK

Oblivious routing has long been studied in two perspectives:
algorithmic construction with performance bounds [18], [19],
[20], [21], [22], [23], [24], [25] and mathematical optimiza-
tion [20], [21], [22], [23], [26], [27], [28], [29].

Oblivious routing with competitive ratio: In 1980s,
Valiant et al. [18], [19] studied the competitive ratio, which is
the maximal ratio of the congestion resulting from an oblivious
routing algorithm to the optimal congestion for any traffic
matrix, and proposed an O(log n)-competitive ratio oblivious
routing algorithm for hypercube topology where n is the
number of nodes in a network. The key idea of Valiant’s
routing scheme is that the traffic from a source is equally split
to intermediate nodes, and every intermediate node routes the
traffic to its destination. Azar et al. [26] proved the Ω(

√
n)

lower-bound of competitive ratio for a directed graph.
Alternatively, an oblivious routing scheme can be effi-

ciently constructed from decomposition trees from hierarchical
decomposition. In [24], Räcke proposed the oblivious routing
scheme for undirected graphs with competitive ratio O(log3 n)
using a single decomposition tree. Later in [25], Räcke uti-
lized the convex combination of decomposition trees [30] to
obtain an O(log n)-competitive ratio routing scheme. Nonethe-
less, the aforementioned methods focus on competitive ratios
instead of optimal oblivious routing schemes.

Optimal oblivious routing: Azar et al. [26] proposed a
polynomial-time linear program with a separate oracle for
optimal oblivious routing solution. Later, Applegate et al. [27],
[28] proposed an efficient single polynomial-size linear pro-
gram by combining the dual formulation of the oracle with
the main linear program. Kodialam et al. [20], [21], [22],
[23] focused on the hose traffic model and independently
proposed a single polynomial-size linear program. They also
proposed a generalized two-phase routing scheme where the
traffic can be split to intermediate nodes with predetermined
split ratios. The scheme is proven to achieve at least half of
the optimal throughput in some cases. For a clique topology,
Zhang-Shen et al. [14], [29] utilized the unique property of
employing two-phase routing on a clique network to obtain the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

CHITAVISUTTHIVONG et al.: OPTIMAL OBLIVIOUS ROUTING WITH CONCAVE OBJECTIVES FOR STRUCTURED NETWORKS 3

Fig. 2. Aggregated link capacity in the physical network is normalized to
the number of physical links in the logical network. Switches are labeled by
0 to 5. Switches 0 to 3 are connected to 2, 2, 3, 3 servers respectively.

optimal link capacity allocation for robust backbone networks.
However, all methods mentioned above are either intractable
for large-scale topologies or too specific to some topologies.
Instead, our work proposes a new method for highly structured
large-scale topologies and supports concave objective func-
tions, which have not been considered in all previous works.

III. SYSTEM MODEL

This section formally models a datacenter network, traffic
demands, and the oblivious routing formulation. These models
are general and should fit most practical datacenter networks.

A. Datacenter Network Model

A datacenter network is an interconnection of servers and
ethernet switches. Each server has a single full-duplex port for
bi-directional communication and is connected to a switch.1

Each network switch has a finite number of full-duplex ports
for interconnection with servers and other switches. For exam-
ple, Broadcom’s Tomahawk 4 Ethernet switch chip can be
configured as 256 ports at 100Gbps [33]. Two devices are
physically connected by connecting ports from both ends.
In practice, there could be multiple physical links between
two devices to increase communication capacity. Our model
considers a logical link between any two devices, and the
logical capacity equals the combined capacity of all physical
links between the devices. Since the capacity of physical links
are identical, we normalize the logical link capacity by the
physical link capacity,2 and we only consider the number of
physical links between devices. This model based on logical
links is illustrated in Fig. 2.

A datacenter network is a directed graph with the set of
switches S and the set of logical links L. Every logical link
connects two switches. The graph is assumed to be connected.
A directed link (i, j) connects switch i to switch j with
capacity Cij equaling the number of physical links between
the switches. Because of the full-duplex ports, link (i, j) ∈ L
if and only if (j, i) ∈ L, and both links have identical capacity,
i.e., Cij = Cji for every (i, j) ∈ L. To account for servers,
let Hs be the number of servers connected to switch s for
every s ∈ S. Then, we define Sk as the set of switches
with k servers attached, Sk = {s ∈ S : Hs = k} for every

1When a server has multiple ports and routing capability, as in server-
centric topologies [31], [32], such a server can be viewed as an ethernet
switch attached with multiple servers.

2When the capacities of physical links are not identical, the normalization
uses the greatest common divisor.

non-negative integer k. The set S0 contains all switches with
no servers attached. We further define a set of switches with
server(s) attached as H = S\S0.

We adopt the multi-commodity model to directly measure
throughput between every pair of source and destination
switches with server(s) attached. Denote the set of commodi-
ties by C =

{
(u, v) ∈ H2 : u ̸= v

}
. This set is also used for

traffic demand modeling.

B. Traffic Model

Traffic inside a datacenter network is a combination of
demands generated by servers attached to different switches.
Since a commodity is defined at the switch level, the demand
from a switch is the aggregate demand from its attached
servers to servers on other switches. This demand is limited
by the capacity of the server-facing links, the logical links
between a switch and its attached servers. From the normal-
ization, every switch can source and receive traffic demands at
most the number of its attached servers. We denote the traffic
demand of commodity (u, v) by tuv for every (u, v) ∈ C.
A combination of traffic demands from every commodity
forms a traffic matrix [tuv] ∈ R|H|

2

+ where R+ is a set of
non-negative reals. The set of all possible traffic matrices is
denoted by T , which is also called the hose traffic model [23],
[34], where

T =

[tuv] ∈ R|H|
2

+ :

∑
v∈H tuv ≤ Hu ∀u ∈ H∑
u∈H tuv ≤ Hv ∀v ∈ H

tuu = 0 ∀u ∈ H

 .

The first and second constraints ensure every switch can source
and receive traffic at most the total capacity of all server-
facing links. The last constraint ensures that a switch internally
forwards traffic between servers connected to it.

This traffic set is used to design optimal oblivious routes
between every commodity with predictable throughput per-
formance. For example, if all routes can deliver every traffic
matrix in T , no congestion from capacity violation will occur.

C. Oblivious Routing Formulation

Oblivious routing distributes traffic demand of every com-
modity over links in the network. We assume traffic can be
split arbitrarily at any intermediate switch similar to [14]
and [15]. Every splitting proportion is independent of the
traffic demand. For example, with the 1 : 2 split proportion,
1 unit of traffic demand is split to 1/3 and 2/3, and 2 units
are split to 2/3 and 4/3. Hence, the routing is oblivious
to traffic demands. Next, we formulate an oblivious routing
optimization problem.

Recall that we adopt the multi-commodity model with the
commodity set C where a commodity is a pair of source and
destination switches. For each commodity (u, v), we decouple
traffic demand tuv from routing and splitting by defining fuv

ij

as a share of the demand over a link (i, j) such that the actual
traffic over the link is tuvfuv

ij .
Since, in general, a datacenter’s traffic demand can be any

traffic matrix in T , the throughput of commodity (u, v) is
defined by a non-negative factor θuv that scales every traffic

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

demand of the commodity in the traffic set. For example, the
worst-case throughput, described in [10], [15], and [35], is the
worst scaling over all commodities, min(u,v)∈C θuv , such that
the overall worst-case throughput equals 1/2 means any traffic
matrix T ∈ T /2 does not violate any link capacity.

For generality, our formulation maximizes a concave func-
tion g : R|C|+ → R of the throughput variables {θuv}. This
general concave function includes the worst-case through-
put above, the worst-case throughput with marginal through-
put [36]

A min
(u,v)∈C

θuv +
∑

(u,v)∈C

θuv, (1)

the proportional fair function [37]∑
(u,v)∈C

log(θuv), (2)

and other functions such as the average delay [38] and the α-
fairness function [39]. We thus formulate the oblivious routing
problem with a concave objective as follows:

Maximize g({θuv})

Subject to
∑

j∈O(i)

fuv
ij −

∑
j∈I(i)

fuv
ji =

θuv {I [i = u]− I [i = v]} , ∀i ∈ S,∀(u, v) ∈ C∑
(u,v)∈C

tuvfuv
ij ≤ Cij , ∀(i, j) ∈ L,∀[tuv] ∈ T

fuv
ij , θuv ∈ R+, ∀(u, v) ∈ C,∀(i, j) ∈ L, (3)

where O(i) and I(i) are respectively the sets of switches that
switch i has out-going links to and in-coming links from.3 The
first constraint is a conservation of share at every switch. The
second constraint is a robust link capacity that considers all
possible traffic matrices.

Although the formulation can be transformed to a linear
program with the extreme points of the traffic set (similar
to the technique used in [34]), the sheer numbers of com-
modities O(|H|2), directed links O(|L|), and the extreme
points O(|H|!) at the scale of datacenter networks can easily
overwhelm the available memory of any off-the-shelf solver
and its ability to obtain optimal solutions. In particular,
the numbers of variables and constraints are respectively
O(|H|2|L|) and O(|H|2|S| + |L||H|!). Another formulation
in [27] can reduce these numbers to polynomial; even so, the
formulation can still overwhelm available memory easily as
shown in our evaluations. In the next section, we leverage
topological structure in some datacenter networks to achieve
tractability.

IV. CHARACTERIZATION OF OPTIMAL SOLUTIONS

This section first introduces graph automorphisms that iden-
tify “similar” structure in datacenter networks together with
the objective function in (3). We then prove the existence of
an optimal oblivious routing solution that also has a “similar”
structure.

3We have O(i) = I(i) under the full-duplex assumption.

Fig. 3. Suppose the objective function is
∑

(u,v)∈C log θuv . The right
network is an automorphism of the left network with ϕ (x) = x + 1 when
x is even and ϕ (x) = x − 1 when x is odd. Both networks have the same
adjacency and distributions of link capacities and servers.

Fig. 4. The share variables of commodities (0, 1) and (2, 3) in an automor-
phism-invariant optimal solution are shown. Each arrow represents a share
variable. For each commodity, the shares having the same value are assigned
an identical color. They are automorphism invariant, e.g., f01∗

04 = f01∗
05 under

the automorphism that permutes switches 4 and 5. For commodity (2, 3),
we have f23∗

40 = f23∗
41 under the automorphism that permutes switches 0 and

1. For throughput variables, we have θ01∗ = θ10∗ and θ23∗ = θ32∗ under
the automorphism that permutes switch pairs (0, 1) and (2, 3).

A. Graph Automorphism

Graph automorphism is a permutation of nodes in the graph
such that the adjacency between nodes before and after the
permutation is the same. For a datacenter network, we extend
the adjacency preservation of graph automorphism to include
the preservation of servers at a switch, link capacity, and the
objective function as illustrated in Fig. 3 and defined formally
below.

Definition 1 (Automorphism): Given an objective function
g and a network topology with switch set S, link set L, link
capacities {Cij}, and the numbers of servers at every switch
{Hu}, an automorphism ϕ : S → S preserves:

1) Adjacency: (ϕ (i) , ϕ (j)) ∈ L for every (i, j) ∈ L.
2) Link capacity: Cij = Cϕ(i)ϕ(j) for every (i, j) ∈ L.
3) Number of Servers: Hu = Hϕ(u) for every u ∈ S.
4) Objective function: g({θuv}) = g({θϕ(u)ϕ(v)}).
Note that the invariant of an objective function in

Definition 1 means the objective function is indiffer-
ent when commodities are permuted under an automor-
phism; for example, g({θuv}) =

∑
(u,v)∈C log θuv =∑

(u,v)∈C log θϕ(u)ϕ(v) = g({θϕ(u)ϕ(v)}).
The set of all automorphisms is denoted by Φ. While the

size of this set could grow exponentially large, it is finite, i.e.,
|Φ| < ∞. Next, we use these automorphisms to reduce the
search space for an optimal solution of the formulation in (3).

B. Existence of an Automorphism-Invariant Optimal Solution

We will show the existence of an automorphism-
invariant optimal solution of the formulation in (3). In an
automorphism-invariant optimal solution, every decision vari-
able in a group under automorphisms in Φ takes the same
value as shown in Fig. 4.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

CHITAVISUTTHIVONG et al.: OPTIMAL OBLIVIOUS ROUTING WITH CONCAVE OBJECTIVES FOR STRUCTURED NETWORKS 5

We first show that applying an automorphism to an optimal
solution results in another optimal solution.

Lemma 1: Suppose
{
fuv∗

ij , θuv∗} is an optimal solution of
the formulation in (3). Given any automorphism ϕ ∈ Φ, the
solution

{
fuv

ij , θuv
}

is also an optimal solution such that
fuv

ij = f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) and θuv = θϕ(u)ϕ(v)∗.

Proof: To show that the solution from an automorphism
is also an optimal solution, we show that the solution leads to
the optimal objective value and the feasibility of all constraints.

Proving the objective value is optimal is straightforward
from the invariant of an objective function in Definition 1 as

g({θuv}) = g({θϕ(u)ϕ(v)∗}) = g({θuv∗}).

We then consider the feasibility of constraints.
From a share conservation constraint at switch i and com-

modity (u, v) in (3), the difference between the out-going
shares and the in-coming shares is

∆(u, v, i) =
∑

j∈O(i)

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) −

∑
j∈I(i)

f
ϕ(u)ϕ(v)∗
ϕ(j)ϕ(i)

=
∑

j∈O(ϕ(i))

f
ϕ(u)ϕ(v)∗
ϕ(i)j −

∑
j∈I(ϕ(i))

f
ϕ(u)ϕ(v)∗
jϕ(i) . (4)

This is because the adjacency preservation of the automor-
phism in Definition 1. Since the share conservation holds true
for the optimal solution, the difference in (4) becomes:

∆(u, v, i) = θϕ(u)ϕ(v)∗ {I [ϕ (i) = ϕ (u)]− I [ϕ (i) = ϕ (v)]}
= θuv {I [i = u]− I [i = v]} .

This shows that the share conservation constraint at switch i
and commodity (u, v) under the solution from an automor-
phism is feasible. This holds true for every switch i ∈ S and
every commodity (u, v) ∈ C.

For the link capacity constraint at link (i, j) and traffic
matrix [tuv] in (3), the left-hand side under the solution from
an automorphism equals∑

(u,v)∈C

tuvf
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) =

∑
(u,v)∈C

tϕ
−1(u)ϕ−1(v)fuv∗

ϕ(i)ϕ(j)

≤ Cϕ(i)ϕ(j) = Cij .

The first equality follows from the re-indexing of terms in the
summation over the commodity set. The inequality uses the
fact that the capacity constraint of link (ϕ (i) , ϕ (j)) under
the optimal solution is feasible when the traffic matrix is
[tϕ

−1(u)ϕ−1(v)], which is a member of the traffic set T . The
last equality follows the capacity preservation in Definition 1.
Therefore, the link capacity constraint at link (i, j) and traffic
matrix T = [tuv] under the solution from an automorphism is
feasible. Again, this holds true for every link (i, j) ∈ L and
every traffic matrix [tuv] ∈ T .

In short, we have shown that the solution from an auto-
morphism yields the optimal objective value and leads to
feasibility of all constraints. Thus, the solution is optimal. □

Lemma 1 implies that the automorphism of an optimal
solution is another optimal solution. Next, we show that there
exists an optimal solution that is invariant to automorphism.

Theorem 1: There exists an automorphism-invariant opti-
mal solution

{
f̂uv

ij , θ̂uv
}

to the formulation in (3) such that

f̂uv
ij = f̂

ϕ(u)ϕ(v)
ϕ(i)ϕ(j) and θ̂uv = θ̂ϕ(u)ϕ(v) for every (u, v) ∈ C,

every (i, j) ∈ L, and every ϕ ∈ Φ.
Proof: The formulation in (3) always has an optimal

solution since the overall capacity from all links is limited.
Let

{
fuv∗

ij , θuv∗} be such an optimal solution. From Lemma 1,

the solution
{

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) , θϕ(u)ϕ(v)∗

}
is an optimal solution for

every automorphism ϕ ∈ Φ. We construct the automorphism-
invariant solution

{
f̂uv

ij , θ̂uv
}

as follows:

f̂uv
ij =

1
|Φ|

∑
ϕ∈Φ

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) , ∀(u, v) ∈ C,∀(i, j) ∈ L

θ̂uv =
1
|Φ|

∑
ϕ∈Φ

θϕ(u)ϕ(v)∗, ∀(u, v) ∈ C

We then show that this solution is automorphism-invariant.
Specifically, it holds for any ϕ′ ∈ Φ that

f̂
ϕ′(u)ϕ′(v)
ϕ′(i)ϕ′(j) =

1
|Φ|

∑
ϕ∈Φ

f
ϕ(ϕ′(u))ϕ(ϕ′(v))∗
ϕ(ϕ′(i))ϕ(ϕ′(j))

=
1
|Φ|

∑
ϕ∈Φ

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) = f̂uv

ij .

The second equality holds because the automorphism set Φ is
a group, so i) the composition of two automorphism mapping
functions gives an automorphism in the group and ii) such
composition over Φ yields the same Φ. Similarly, the same
holds true for θ̂uv∗.

θ̂ϕ′(u)ϕ′(v) =
1
|Φ|

∑
ϕ∈Φ

θϕ(ϕ′(u))ϕ(ϕ′(v))∗

=
1
|Φ|

∑
ϕ∈Φ

θϕ(u)ϕ(v)∗ = θ̂uv.

Therefore, the solution is automorphism-invariant. Next,
we show that it is feasible and optimal. The feasibility can
be easily shown from the facts that the solution is a convex
combination of optimal solutions and all constraints are affine.
For the optimality, let g∗ be the optimal objective value of the
problem in (3). We have from the concavity of an objective
function and Jensen’s inequality [40] that

g({θ̂uv}) = g

 1
|Φ|

∑
ϕ∈Φ

{
θϕ(u)ϕ(v)∗

}
≥ 1
|Φ|

∑
ϕ∈Φ

g
({

θϕ(u)ϕ(v)∗
})

= g∗,

where the last equality uses the fact that all terms in the
summation equal g∗. Since, the solution {θ̂uv} is feasible,
it must be that g({θ̂uv}) = g∗, and the solution is optimal. □

Theorem 1 implies that there is an optimal solution whose
variables in the same group under automorphisms take the
same value. We use this insight in the next section to reduce
the number of decision variables and constraints of the obliv-
ious routing formulation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Throughput variables form four groups. Each group is represented by a
representative throughput variable and a corresponding commodity. The set of
representative commodities is Ĉ = {(0, 1), (0, 2), (2, 0), (2, 3)}. Commodity
(0, 1) has a representative throughput θ̂01 representing variables θ01, θ10.

V. FINDING AN AUTOMORPHISM-INVARIANT
OPTIMAL SOLUTION

We now formulate an optimization problem that targets
an automorphism-invariant solution. The formulation defines
a new set of representative variables representing groups of
variables under the automorphisms. Furthermore, unnecessary
constraints and traffic matrices are removed from the formu-
lation, resulting in a tractable iterative algorithm.

A. Representative Variables

From Theorem 1, we observe that the optimal values
of throughput variables form groups under automorphisms.
In particular, the values are identical for every commodity in
the same group, whose members can be mapped to one another
by some automorphisms, i.e., a group of commodities contain-
ing commodity (u, v) is {(ϕ (u) , ϕ (v)) : ∀ϕ ∈ Φ}. Therefore,
we can pick a commodity in each group as a representative
commodity for the group. We denote the set of all representa-
tive commodities by Ĉ and define a representative throughput
variable θ̂uv for every representative commodity (u, v) ∈ Ĉ.
Fig. 5 shows an example of representative commodities and
throughput variables. Further, we define a function π : C → Φ
such that the input commodity under the output automorphism
is the representative commodity of the input, i.e., ϕ = π(u, v)
and (ϕ (u) , ϕ (v)) ∈ Ĉ. Section VI-B describes an efficient
algorithm to construct Ĉ and π.

The representative shares can be defined using the
same process. For each representative commodity (u, v) ∈
Ĉ, we observe from Theorem 1 that the optimal val-
ues of share variables form groups under automorphisms.
In particular, the values are identical for every link in
the same group, whose members can be mapped to
one another by some automorphisms that does not affect
(u, v), i.e., the group of links containing link (i, j)
is {(ϕ (i) , ϕ (j)) : (ϕ (u) , ϕ (v)) = (u, v) ∃ϕ ∈ Φ}. There-
fore, we can pick a link in each group as a representative
link for the group. We denote the set of all representative
links for a representative commodity (u, v) by L̂uv and define
a representative share variable f̂uv

ij for every (u, v) ∈ Ĉ
and every (i, j) ∈ L̂uv . Fig. 6 shows representative share
variables for a simple network. Further, we define a mapping
function σuv : L → Φ such that the input link under the
output automorphism is the representative link of the input,
i.e., ϕ = σuv(i, j) and (ϕ (i) , ϕ (j)) ∈ L̂uv . Section VI-C
describes an efficient algorithm to construct L̂uv and σuv .

Since the representative variables of throughput and share
have been defined, the last step is to map every variable in (3)
to these representatives. We define the mapping of throughput

Fig. 6. Representative share variables of each representative commodity.
An arrow represents a representative share variable in the direction of the
arrow. For example, with commodity (0, 1), the link (0, 4) has two representa-
tive variables f̂01

04 , f̂01
40 , and the link (2, 5) has only one representative variable

f̂01
25 . Representative share variables for each representative commodity depend

on the network structure and the commodity.

and share variables in (3) to their representatives as follows:

φ [θuv] = θ̂ϕ(u),ϕ(v) ∀(u, v) ∈ C where ϕ = π(u, v),

φ
[
fuv

ij

]
= f̂

ϕ(u)ϕ(v)
ϕ′(ϕ(i)),ϕ′(ϕ(j)) ∀(u, v) ∈ C,∀(i, j) ∈ L

where ϕ = π(u, v) and ϕ′ = σϕ(u)ϕ(v)(i, j).

Using the above mapping and the representative vari-
ables, we formulate an optimization problem targeting an
automorphism-invariant optimal solution in Theorem 1 as
follows:

Maximize g({φ [θuv]})

Subject to
∑

j∈O(i)

φ
[
fuv

ij

]
−

∑
j∈I(i)

φ
[
fuv

ji

]
=

θ̂uv {I [i = u]− I [i = v]} , ∀i ∈ S,∀(u, v) ∈ Ĉ∑
(u,v)∈C

tuvφ
[
fuv

ij

]
≤ Cij , ∀(i, j) ∈ L,∀[tuv] ∈ T

f̂uv
ij , θ̂uv ∈ R+, ∀(u, v) ∈ Ĉ,∀(i, j) ∈ L̂uv. (5)

The total numbers of variables and constraints in (5)
are significantly reduced by considering the representative
variables. Notice that the share conservation constraints are
defined over representative commodities Ĉ instead of C. The
next sections address the challenging robust link capacity
constraint.

B. Removing Unnecessary Link Constraints

The number of link capacity constraints in (5) grows
like O(|L||H|!). However, many constraints are unneces-
sary and can be removed. We observe that traffic demands
on link (i′, j′) can be aggregated for each representative
share.∑
(u,v)∈C

tuvφ
[
fuv

i′j′
]

=
∑

(u,v)∈Ĉ

∑
(i,j)∈L̂uv

f̂uv
ij

∑
(a,b)∈C:φ

[
fab

i′j′

]
=f̂uv

ij

tab

=
∑

(u,v)∈Ĉ

∑
(i,j)∈L̂uv

f̂uv
ij αuv

ij , (6)

where αuv
ij =

∑
(a,b)∈C:φ

[
fab

i′j′

]
=f̂uv

ij

tab.

Any two links that have the same set of coefficient alphas
under some automorphism are duplicate, and we only need
to consider one of them as a representative constraint. Let
L̂ be the set of representative link constraints. Section VI-D

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

CHITAVISUTTHIVONG et al.: OPTIMAL OBLIVIOUS ROUTING WITH CONCAVE OBJECTIVES FOR STRUCTURED NETWORKS 7

provides an efficient algorithm to construct this set. Therefore,
the link capacity constraint in (5) can be replaced by∑

(u,v)∈C

tuvφ
[
fuv

ij

]
≤ Cij , ∀(i, j) ∈ L̂,∀[tuv] ∈ T . (7)

Notice that the reduction from L to L̂ is by consider-
ing the representative variables and traffic demands. Ignor-
ing them and only considering automorphisms of links can
lead to an under-constrained formulation and a sub-optimal
solution.

C. Traffic Matrix Selection

Including the entire traffic set T into the link capacity
constraint is impractical due to the continuity of the set.
While it is possible to consider the set of extreme points, the
number of such points is O(|H|!) for a simple case of double
stochastic matrices when the number of servers per switch is
identical.

To alleviate this issue, we construct the traffic set itera-
tively based on two observations. First, the worst-case traffic
load on different representative link is caused by a different
set of traffic matrices. Therefore, we define a set of traffic
matrices Tij considered for representative link (i, j) ∈ L̂
and formulate the optimization parameterized by these sets
as follows.

R
(
{Tij}(i,j)∈L̂

)
:

Maximize g({φ [θuv]})

Subject to
∑

j∈O(i)

φ
[
fuv

ij

]
−

∑
j∈I(i)

φ
[
fuv

ji

]
=

θ̂uv {I [i = u]− I [i = v]} , ∀i ∈ S,∀(u, v) ∈ Ĉ∑
(u,v)∈C

tuvφ
[
fuv

ij

]
≤ Cij , ∀(i, j) ∈ L̂,∀[tuv] ∈ Tij

f̂uv
ij , θ̂uv ∈ R+, ∀(u, v) ∈ Ĉ,∀(i, j) ∈ L̂uv. (8)

While solving the above formulation with insufficient traffic
matrices in the traffic sets {Tij} leads to a sub-optimal obliv-
ious routing solution, the sub-optimal solution can still guide
which traffic matrices should be included in the sets. This
leads to the second observation that traffic matrices also have
automorphisms, and one matrix can represent many matrices.
This observation can be seen from the coefficient alphas in
(6). The implication is that including only a small subset of
traffic matrices in each traffic set Tij is sufficient to achieve
an optimal oblivious routing solution. We therefore generate
representative traffic matrices based on a solution of (8) by
solving a simple linear program parameterized by the solution
for every link (i′, j′) ∈ L̂ as follows.

Ti′j′

({
f̂uv

ij

}(u,v)∈Ĉ

(i,j)∈L̂uv

)
:

Maximize
∑

(u,v)∈C

tuvφ
[
fuv

i′j′
]

Subject to
∑

v∈H\{u}

tuv ≤ Hu, ∀u ∈ H

Algorithm 1 Optimal Oblivious Routing

Initialize Dij ← {[tuv]init} for every (i, j) ∈ L̂
while

⋃
(i,j)∈L̂Dij ̸= ∅ do

Tij ← Tij ∪ Dij for every (i, j) ∈ L̂{
f̂uv

ij

}(u,v)∈Ĉ

(i,j)∈L̂uv
,
{

θ̂uv
}(u,v)∈Ĉ

← R
(
{Tij}(i,j)∈L̂

)
for (i′, j′) ∈ L̂ do

[tuv]← Ti′j′

({
f̂uv

ij

}(u,v)∈Ĉ

(i,j)∈L̂uv

)
if

∑
(u,v)∈C tuvφ

[
fuv

i′j′

]
> Ci′j′ then

Di′j′ ← {[tuv]}
else
Di′j′ ← ∅

return
{

f̂uv
ij

}(u,v)∈Ĉ

(i,j)∈L̂uv
,
{

θ̂uv
}(u,v)∈Ĉ

∑
u∈H\{v}

tuv ≤ Hv, ∀v ∈ H

tuv ∈ R+, ∀(u, v) ∈ C. (9)

For every representative link (i′, j′), the optimization in (9)
finds the worst-case traffic matrix with respect to a given set of
representative shares. The obtained traffic matrix is added to
Tij , which is considered in (8) for later iterations. This process
is summarized next.

D. Iterative Algorithm

In Algorithm 1, the traffic sets are initialized with an initial
traffic matrix. The algorithm iteratively finds a routing solution
according to these traffic sets. The routing solution is used to
generate more traffic matrices, which in turn help improving
the next routing solution, by including those that violate link
capacity constraints into the traffic sets. This process continues
until no traffic matrices violating the link capacity constraints
are found.4 Thus, the final routing solution is optimal because
it is an automorphism-invariant solution that optimizes the
objective and satisfies all conservation constraints in (8) and
that no traffic matrices violate capacity under this solution.
Note that Algorithm 1 is non-polynomial time due to the
alternation.

The initial traffic matrix [tuv]init in Algorithm 1 can sig-
nificantly reduce the number of iterations required to obtain
the optimal solution. We set this matrix to the solution of
the weighted bipartite matching problem, where the node sets
are U = V = H, and the weight between any two nodes
(u, v) ∈ U × V equals the product of their minimum path
length in the network topology times their maximum traffic
load min(Hu, Hv). This initialization is inspired by the works
in [35], [42], and [43], in which all switches have the same
number of servers.

VI. EFFICIENT IMPLEMENTATION

Algorithm 1 and its sub-routines in the previous section
rely heavily on representative sets Ĉ, L̂uv, L̂, and the mapping

4This process is similar to constraint generation techniques [41].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. A logical network is transformed to an undirected graph with colors.

functions π and σuv . Constructing them from the automor-
phism set Φ, whose size grows exponentially, is a com-
binatorial problem. This section describes polynomial-time
algorithms for efficient construction, based on automorphism
generators.

A. Generators of Automorphisms

Generators are a smaller set of automorphisms that can
generate a whole set of automorphisms. Specifically, every
automorphism in the set is a combination of the generators.
This set can be obtained from off-the-shelf software, such as
nauty [44], for an undirected graph with vertices, edges, and
a set of colors assigned to the vertices.

The objective function in (5) and our datacenter network
model with link capacities and numbers of servers at each
switch can be transformed to an undirected graph with colors
as shown in Fig. 7. Every switch is translated to a vertex in the
graph. To preserve the number of servers at each switch under
automorphism, an identical color is assigned to the vertices
whose number of servers is the same, and different colors are
assigned to vertices having different numbers of servers. For
links and capacities, each link is transformed into an auxiliary
vertex with two edges. One end of both edges is connected
to the auxiliary vertex, and the other ends connect to the two
switches to which the original link is adjacent. To preserve
link capacity under automorphism, the auxiliary vertices of
links with the same capacity are assigned the same color, and
auxiliary vertices of links with different capacities are assigned
different colors. To preserve the invariant of the objective
function, a vertex and edges are added between the source and
destination of each commodity. The vertices associated with
commodities whose permutation does not change the objective
function are assigned an identical color. Otherwise, the vertices
are assigned different colors if their associated commodities
change the objective function under some permutation.

The above transformation yields an undirected graph with a
set of colors as an input to the off-the-shelf software that out-
puts the generators. We denote the set of these generators by
Φ̂, whose generated automorphisms satisfy Definition 1. It is
used to efficiently generate representative sets and mapping
functions used extensively in the previous section.

B. Representative Commodity

The representative commodity set Ĉ and the mapping func-
tions π, used for the formulation in (5), are constructed by
Algorithm 2.

Algorithm 2 Representative Commodity Construction

Initialize empty sets Q,P, Ĉ and dictionaries D,π
for (u, v) ∈ C do

if (u, v) ∈ P then
continue

Ĉ ← Ĉ ∪ {(u, v)}
D(u, v)← ϕidentity
Q ← Q∪ {(u, v)}
while Q is not empty do

Pop (a, b) from Q
P ← P ∪ {(a, b)}
for ϕ ∈ Φ̂ do

if (ϕ (a) , ϕ (b)) /∈ P then
Q ← Q∪ {(ϕ (a) , ϕ (b))}
D(ϕ (a) , ϕ (b))← ϕ (D(a, b))

for (u, v) ∈ C do
π(u, v)← (D(u, v))−1

return Representative set Ĉ and function π

Algorithm 2 searches over the commodity set. It picks a
commodity, assigns it as a representative commodity, and finds
all represented commodities. The search process utilizes the
generator set Φ̂, instead of the exponentially large automor-
phism set Φ, to find represented commodities. The algorithm
visits each commodity once, so the complexity is O

(
|C|

∣∣∣Φ̂∣∣∣).
Once all represented commodities of the picked representa-
tive are found, the algorithm picks an unpicked commodity
and continues the process. In the process, the dictionary
D keeps track of automorphisms that map representatives
to their represented commodities. The last step inverts each
automorphism in D and constructs the dictionary π storing
automorphisms that map represented commodities to their
representatives.

C. Representative Share

For each representative commodity (u, v), the set of repre-
sentative shares L̂uv and the mapping functions σuv , used for
the formulation in (5), are constructed by Algorithm 3.

Given a representative commodity (u, v), the algorithm
first constructs a commodity-preserved generator set Φ̂uv

containing all generators that have no effect on the given
commodity. The algorithm then searches over the links set
using these commodity-preserved generators. It picks a link as
a representative link and finds all corresponding represented
links. This process utilizes the generator set Φ̂uv to search
for represented links. The algorithm visits each link once,
so its complexity is O

(
|L|

∣∣∣Φ̂uv
∣∣∣). Once all represented links

of the picked representative are found, the algorithm picks
an unpicked link and continues the process. The dictionary D
keeps track of automorphisms that map representatives to their
represented links. The last step inverts each automorphism in
D and constructs the dictionary σuv storing automorphisms
that map represented links to their representatives.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

CHITAVISUTTHIVONG et al.: OPTIMAL OBLIVIOUS ROUTING WITH CONCAVE OBJECTIVES FOR STRUCTURED NETWORKS 9

Algorithm 3 Representative Share Construction

Initialize empty sets Q,P, L̂uv and dictionary D,σuv

Φ̂uv ←
{

ϕ ∈ Φ̂ : (u, v) = (ϕ (u) , ϕ (v))
}

for (i, j) ∈ L do
if (i, j) ∈ P then

continue
L̂uv ← L̂uv ∪ {(i, j)}
D(i, j)← ϕidentity
Q ← Q∪ {(i, j)}
while Q is not empty do

Pop (a, b) from Q
P ← P ∪ {(a, b)}
for ϕ ∈ Φ̂uv do

if (ϕ (a) , ϕ (b)) /∈ P then
Q ← Q∪ {(ϕ (a) , ϕ (b))}
D(ϕ (a) , ϕ (b))← ϕ (D(a, b))

for (i, j) ∈ L do
σuv(i, j)← (D(i, j))−1

return Representative set L̂uv and function σuv

D. Representative Link Capacity Constraint

The set of representative links L̂ for the capacity constraints
in (7) can be constructed by removing redundant constraints
under automorphisms. More precisely, two constraints of links
(x, y) and (g, h) are redundant when 1) their link capacities
are identical, Cxy = Cgh, and 2) their traffic loads in (6)
are identical under the traffic set T . The former is easy to
identify, but the latter is challenging as the comparison is over
the whole traffic set. Theorem 2 simplifies this comparison.

Theorem 2: Given links (x, y) and (g, h), their capacity
constraints in terms of representative shares are∑
(u,v)∈Ĉ

∑
(i,j)∈L̂uv

f̂uv
ij

∑
(a,b)∈C:φ[fab

xy]=f̂uv
ij

tab ≤ Cxy ∀[tuv] ∈ T ,

∑
(u,v)∈Ĉ

∑
(i,j)∈L̂uv

f̂uv
ij

∑
(a,b)∈C:φ[fab

gh]=f̂uv
ij

tab ≤ Cgh ∀[tuv] ∈ T .

The two constraints are identical when 1) their link capacities
are identical, i.e., Cxy = Cgh, and 2) their numbers of traffic
demands associated with a representative share are identical
for every representative share such that the following holds
for every (u, v) ∈ Ĉ and every (i, j) ∈ L̂uv:∣∣∣{(a, b) ∈ C : φ

[
fab

xy

]
= f̂uv

ij

}∣∣∣
=

∣∣∣{(a, b) ∈ C : φ
[
fab

gh

]
= f̂uv

ij

}∣∣∣. (10)

Proof: The first condition is straightforward.
We prove the second condition as follows. Considering
link (i′, j′), we observe that every commodity in{

(a, b) ∈ C : φ
[
fab

i′j′

]
= f̂uv

ij

}
is represented by a common

commodity (u, v) as they share the same representative share
variable f̂uv

ij . It follows that these commodities generate an
identical set of traffic demands, so the set of aggregated traffic
demands associated with the representative share variable

are identical if the numbers of members in both sets are the
same, i.e., when (10) holds, then

∑
(a,b)∈C:φ[fab

xy]=f̂uv
ij

tab : ∀[tab] ∈ T

=

∑

(a,b)∈C:φ[fab
gh]=f̂uv

ij

tab : ∀[tab] ∈ T

 .

Therefore, comparing the number of traffic demands associ-
ated with each representative share is sufficient. □

The implication of Theorem 2 is that we only need to
compare the number of traffic demand terms associated with
each representative share to determine whether two constraints
are identical under automorphism. This leads to a simpler
construction of the representative capacity constraints.

The set of representative capacity constraints is constructed
by computing the distribution of the numbers of traffic demand
terms associated with representative shares. Then, for every
group of links having the same distribution, we take one link
from the group and use it as the representative of the group.

VII. EVALUATION

The performance, scalability, and generality of Algorithm 1
are evaluated over three potential applications. The algorithm
is implemented in Python 3. The generators of automorphisms
are obtained from nauty [44]. All evaluation is performed on
a commodity computer with Intel Core i9-12900K processor
and 128GB memory. Every optimization problem is solved
by MOSEK [45]. Furthermore, all optimal routing solutions
are double-checked for capacity violation using the method
in [42].

A. Throughput Performance

Partially deployed FatTree: A fully deployed FatTree
topology [1], constructed from 32-port switches, can accom-
modate 8192 servers. In practice, this topology is incremen-
tally deployed in blocks when additional servers are needed.
However, the routing for the fully deployed topology is not
optimal for the partially deployed one due to the imbalance
at the core switches, i.e., each core switch in Fig. 1 has two
links to one block and a link to another block. Therefore,
we apply our algorithm to find the optimal oblivious rout-
ing for partially deployed FatTree with different numbers of
aggregation blocks. Note that the fully deployed topology has
32 aggregation blocks.

We evaluate the performance of our algorithm by the worse-
case throughput, min(u,v)∈C θuv . The result is shown in Fig. 8
and is compared to a heuristic algorithm in [46], which tries
to balance the imbalance by weighting flows regarding their
bottleneck capacity. Our algorithm yields 12.5% − 87.5%
throughput improvement over the heuristic algorithm when
their throughput values are different. In addition to the worst-
case throughput in Fig. 8, Fig. 9 shows the normalized
total throughput, 1

|C|
∑

(u,v)∈C θuv , from the max-min with
marginal throughput objective in (1) and the proportional fair

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Worst-case throughput values under partially deployed FatTree. At
30 aggregation blocks, the throughput improvement is 87.5%.

Fig. 9. Normalized total throughput values under partially deployed FatTree.

TABLE I
THE WORST-CASE THROUGHPUT UNDER DRINGS

objective in (2). The latter yields slightly higher normalized
total throughput.

DRing: The DRing topology [12] is designed for moderate-
scale datacenter networks. A DRing topology is constructed
from supernodes where each supernode consists of switches.
Every pair of switches is directly connected if they lie in
adjacent supernodes. We compare the performance of the
optimal routing solution from our algorithm with the solution
from Shortest-Union(2) routing scheme suggested in [12].

Table I shows the improvement of the worst-case throughput
from three sizes of DRing. The small-size DRing is con-
structed from 6 supernodes with 2 switches per supernode
and 10 servers per switch, as shown in Fig. 10. The large-size
DRing is constructed from 10 supernodes with 20 switches
per supernode and 80 servers per switch. The last setting
follows the original paper [12]. The result shows that our
optimal solution yields 1.36× to 2.55× throughput gain over
the Shortest-Union(2) routing scheme.

Fig. 10 compares the routing solutions obtained from our
algorithm and Shortest-Union(2) under the small-size DRing.
There are two groups of commodities represented by com-
modities (0, 1) and (0, 2). There is no differences between the
two routing schemes for commodity (0, 1), as shown in the
left plot. However, the traffic is distributed differently under
the two routing schemes for commodity (0, 2), as shown in the
middle and right plots. Our optimal routing solution improves
the worst-case throughput by dispersing traffic to every switch.

Fig. 10. The example of routing solutions under a small-size DRing. Each
node represents a switch. The source and destination are assigned an identical
color if they lie within the same supernode.

Fig. 11. The overall computation times at different FatClique’s sizes are
broken down into computing automorphism generators by nauty (Generator),
finding representative commodities by Algorithm 2 (Rep. commodity), finding
representative shares by Algorithm 3 (Rep. share), finding representative links
utilizing Theorem 2 (Rep. link), and the execution time of Algorithm 1
(Optimization).

B. Scalability Under Various Topologies

FatClique: The FatClique topology [11] has been proposed
for high manageability datacenter networks without routing.
Our algorithm could provide this missing routing. Each Fat-
Clique topology is built as follows. The numbers of blocks,
sub-blocks per block, and switches per sub-block are set to an
identical value. We range this value from 2 to 12.

The computation time of Algorithm 1 at different sizes of
FatClique is shown in Fig. 11. While finding the representative
links is the most time-consuming part, it can be pre-computed
before executing Algorithm 1. Fig. 12 shows the sizes of the
strawman formulation in (3) and the automorphism-invariant
formulation in (8) in terms of numbers of variables and
constraints assuming only one traffic matrix is considered,
|T | = 1. It is easy to see that the latter formulation is much
smaller than the former one. In fact, the formulation in (3)
cannot be computed beyond 216 switches due to insufficient
computing memory. Fig. 13 shows the numbers of traffic
matrices required for finding the optimal oblivious routing
solutions in formulations (3) and (8). Again, the numbers of
required traffic matrices in Algorithm 1 is much smaller than
the set of all extreme points.

Other topologies: Next, we consider the optimization times
of other topologies. We use the same settings for FatClique
and partially deployed FatTree. For DRing, The number of
switches per supernode is twice the number of supernodes,
which is incremented by 2 from 4 to 20.

The result in Fig. 14 shows the optimization times of
Algorithm 1 with the objectives in (1) and (2) and the opti-
mization times of the linear program in [27].5 The linear
program cannot scale beyond 32 switches due to insuffi-

5The heuristic in [46] for FatTree does not involve solving optimization.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

CHITAVISUTTHIVONG et al.: OPTIMAL OBLIVIOUS ROUTING WITH CONCAVE OBJECTIVES FOR STRUCTURED NETWORKS 11

Fig. 12. The numbers of variables and constraints, assuming |T | = 1,
in formulations (3) and (8) are plotted at different sizes of FatClique. The
maximum numbers for formulation (8) are respectively 144 and 5185 when
topology has 1728 switches.

Fig. 13. The numbers of traffic matrices per link capacity constraint in
formulations (3) and (8) are plotted at different sizes of FatClique. The
maximum number for formulation (8) is 81 when topology has 1331 switches,
while the numbers beyond 10308 are not plotted for formulation (3) with more
than 125 switches.

Fig. 14. The optimization time at different size of FatClique, partially
deployed FatTree, and DRing. The limit of optimization time is set to
192 hours. The maximum number of switches is 1728 switches. Note that
the smallest partially-deployed FatTree cannot be solved by [27] due to
insufficient memory.

Fig. 15. Optimal oblivious routing for non-uniform and structured topology.

cient memory for all three topologies. Our algorithm scales
well, and its optimization times under the two objectives are
comparable.

C. Structured Topology With Non-Uniformity

Our algorithm is applicable for a more general structured
topology with non-uniform link capacities and server distribu-

tion as illustrated in Fig. 15. The top-left plot shows the net-
work with 4 groups of switches, {0, 1} , {2, 3, 4} , {5, 6, 7, 8} ,
{9, 10, 11}, where the first three groups have different numbers
of servers per switch and the last group has none. Logical
links with different thicknesses have different capacities. The
other plots show the optimal oblivious routing for different
representative commodities. It is worth mentioning that the
optimal routing solution for each representative commodity
can be different. For example, commodities (0, 1) only uses
one-hop intermediate switches, while commodity (0, 2) dis-
perses traffic to all switches. This behavior differs from [15]
where traffic demands from every commodity are dispersed to
the same set of intermediate switches.

VIII. CONCLUSION

This paper presents an iterative algorithm to find the optimal
oblivious routing for structured topologies. The algorithm
utilizes the insight that the optimal routing solution is auto-
morphism invariant in order to reduce the solution space and
complexity. This algorithm is applicable for designing obliv-
ious routing for existing datacenter network topologies and
future structured topologies with non-uniform link capacities
and server distribution.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008, doi: 10.1145/1402946.1402967.

[2] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62,
2009, doi: 10.1145/1594977.1592576.

[3] A. Singh et al., “Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015, doi:
10.1145/2829988.2787508.

[4] A. Andreyev. Introducing Data Center Fabric, the Next-Generation
Facebook Data Center Network. Accessed: Apr. 8, 2023. [Online]. Avail-
able: https://engineering.fb.com/2014/11/14/production-engineering/
introducing-data-center-fabric-the-next-generation-facebook-data-
center-network/

[5] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-scale net-
works,” in Proc. Conf. High Perform. Comput. Netw., Storage Anal., New
York, NY, USA, Nov. 2009, pp. 1–11, doi: 10.1145/1654059.1654101.

[6] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in Proc. Int. Symp. Comput. Archit., 2008,
pp. 77–88.

[7] M. Besta and T. Hoefler, “Slim Fly: A cost effective low-diameter
network topology,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2014, pp. 348–359.

[8] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jelly-
fish: Networking data centers randomly,” in Proc. 9th USENIX
Symp. Networked Syst. Design Implement. (NSDI), San Jose, CA,
USA, Apr. 2012, pp. 225–238. [Online]. Available: https://www.
usenix.org/conference/nsdi12/technical-sessions/presentation/singla

[9] A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander:
Towards optimal-performance datacenters,” in Proc. 12th Int. Conf.
Emerg. Netw. EXperiments Technol., New York, NY, USA, Dec. 2016,
pp. 205–219, doi: 10.1145/2999572.2999580.

[10] A. Singla, P. B. Godfrey, and A. Kolla, “High throughput data
center topology design,” in Proc. 11th USENIX Symp. Networked
Syst. Design Implement. (NSDI). Seattle, WA, USA, Apr. 2014,
pp. 29–41. [Online]. Available: https://www.usenix.org/conference/
nsdi14/technical-sessions/presentation/singla

[11] M. Zhang, R. N. Mysore, S. Supittayapornpong, and R. Govindan,
“Understanding lifecycle management complexity of datacenter topolo-
gies,” in Proc. 16th USENIX Symp. Networked Syst. Design Implement.
(NSDI), Boston, MA, USA, Feb. 2019, pp. 235–254. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/zhang

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/1402946.1402967
http://dx.doi.org/10.1145/1594977.1592576
http://dx.doi.org/10.1145/2829988.2787508
http://dx.doi.org/10.1145/1654059.1654101
http://dx.doi.org/10.1145/2999572.2999580

12 IEEE/ACM TRANSACTIONS ON NETWORKING

[12] V. Harsh, S. A. Jyothi, and P. B. Godfrey, “Spineless data centers,” in
Proc. 19th ACM Workshop Hot Topics Netw., New York, NY, USA,
Nov. 2020, pp. 67–73, doi: 10.1145/3422604.3425945.

[13] D. Thaler and C. Hopps. RFC2991: Multipath Issues in Unicast and
Multicast Next-Hop Selection. Accessed: Apr. 8, 2023. [Online]. Avail-
able: https://datatracker.ietf.org/doc/html/rfc2991

[14] R. Zhang-Shen and N. McKeown, “Guaranteeing quality of service to
peering traffic,” in Proc. IEEE INFOCOM 27th Conf. Comput. Commun.,
Apr. 2008, pp. 1472–1480.

[15] M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Pre-
configuring IP-over-optical networks to handle router failures and
unpredictable traffic,” IEEE J. Sel. Areas Commun., vol. 25, no. 5,
pp. 934–948, Jun. 2007.

[16] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
7th USENIX Conf. Networked Syst. Design Implement., 2010, p. 19.

[17] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” ACM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 123–137, 2015, doi: 10.1145/2829988.2787472.

[18] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel
communication,” in Proc. 13th Annu. ACM Symp. Theory Comput., New
York, NY, USA, 1981, pp. 263–277, doi: 10.1145/800076.802479.

[19] L. G. Valiant, “A scheme for fast parallel communication,” SIAM J.
Comput., vol. 11, no. 2, pp. 350–361, 1982, doi: 10.1137/0211027.

[20] M. Kodialam, T. Lakshman, and S. Sengupta, “Efficient and robust
routing of highly variable traffic,” in Proc. 3rd Workshop Hot Topics
Netw. (HotNets-III), 2004, pp. 1–6.

[21] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Maximum
throughput routing of traffic in the hose model,” in Proc.
IEEE INFOCOM Int. Conf. Comput. Commun., Apr. 2006,
pp. 1–11.

[22] M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Obliv-
ious routing of highly variable traffic in service overlays and IP
backbones,” IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 459–472,
Apr. 2009.

[23] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Traffic-oblivious
routing in the hose model,” IEEE/ACM Trans. Netw., vol. 19, no. 3,
pp. 774–787, Jun. 2011.

[24] H. Räcke, “Minimizing congestion in general networks,” in Proc. 43rd
Annu. IEEE Symp. Found. Comput. Sci., Nov. 2002, pp. 43–52.

[25] H. Räcke, “Optimal hierarchical decompositions for congestion min-
imization in networks,” in Proc. 4th Annu. ACM Symp. The-
ory Comput., New York, NY, USA, 2008, pp. 255–264, doi:
10.1145/1374376.1374415.

[26] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke, “Optimal
oblivious routing in polynomial time,” in Proc. 34th Annu. ACM Symp.
Theory Comput., New York, NY, USA, Jun. 2003, pp. 38–388, doi:
10.1145/780542.780599.

[27] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental
tradeoffs,” in Proc. Conf. Appl., Technol., Architectures, Protocols Com-
put. Commun., New York, NY, USA, Aug. 2003, pp. 313–324, doi:
10.1145/863955.863991.

[28] D. Applegate and E. Cohen, “Making routing robust to changing traffic
demands: Algorithms and evaluation,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1193–1206, Dec. 2006.

[29] R. Zhang-Shen and N. McKeown, “Designing a predictable inter-
net backbone with valiant load-balancing,” in Proc. 13th Int.
Conf. Quality Service. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 178–192.

[30] J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approx-
imating arbitrary metrics by tree metrics,” in Proc. 34th Annu. ACM
Symp. Theory Comput., New York, NY, USA, Jun. 2003, pp. 448–455,
doi: 10.1145/780542.780608.

[31] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu,
“DCell: A scalable and fault-tolerant network structure for data
centers,” in Proc. SIGCOMM, Aug. 2008, pp. 75–86. [Online].
Available: https://www.microsoft.com/en-us/research/publication/dcell-
a-scalable-and-fault-tolerant-network-structure-for-data-centers/

[32] C. Guo et al., “BCube: A high performance, server-centric
network architecture for modular data centers,” in Proc.
ACM SIGCOMM, Aug. 2009, pp. 63–74. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/bcube-a-high-
performance-server-centric-network-architecture-for-modular-data-
centers/

[33] Broadcom. Tomahawk4/BCM56990 Series. Accessed: Apr. 8, 2023.
[Online]. Available: https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56990-series

[34] S. Supittayapornpong, B. Raghavan, and R. Govindan, “Towards highly
available clos-based WAN routers,” in Proc. ACM Special Interest Group
Data Commun., New York, NY, USA, Aug. 2019, pp. 424–440, doi:
10.1145/3341302.3342086.

[35] P. Namyar, S. Supittayapornpong, M. Zhang, M. Yu, and R. Govindan,
“A throughput-centric view of the performance of datacenter topologies,”
in Proc. ACM SIGCOMM Conf., New York, NY, USA, Aug. 2021,
pp. 349–369, doi: 10.1145/3452296.3472913.

[36] S. Supittayapornpong, P. Namyar, M. Zhang, M. Yu, and R. Govindan,
“Optimal oblivious routing for structured networks,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., 2022, pp. 1988–1997.

[37] F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans.
Telecommun., vol. 8, no. 1, pp. 33–37, Jan./Feb. 1997. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460080106

[38] R. Srikant and L. Ying, Communication Networks: An Optimiza-
tion, Control and Stochastic Networks Perspective. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[39] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.

[40] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[41] S. Boyd and L. Vandenberghe, “Localization and cutting-plane meth-
ods,” From Stanford EE 364b Lecture Notes, Stanford Univ., Stanford,
CA, USA, 2007.

[42] B. Towles and W. Dally, “Worst-case traffic for oblivious rout-
ing functions,” IEEE Comput. Archit. Lett., vol. 1, no. 1, p. 4,
Jan. 2002.

[43] S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla, “Measur-
ing and understanding throughput of network topologies,” in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal., 2016,
pp. 761–772.

[44] B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” J. Sym-
bolic Comput., vol. 60, pp. 94–112, Jan. 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0747717113001193

[45] M. ApS. (2022). MOSEK Fusion API for Python 9.3.21. [Online].
Available: https://docs.mosek.com/9.3/pythonfusion/index.html

[46] J. Zhou et al., “WCMP: Weighted cost multipathing for improved
fairness in data centers,” in Proc. 9th Eur. Conf. Comput. Syst.,
New York, NY, USA, Apr. 2014, pp. 1–14, doi: 10.1145/2592798.
2592803.

Kanatip Chitavisutthivong (Student Member,
IEEE) received the B.Eng. degree in computer engi-
neering from Kasetsart University, Thailand. He is
currently pursuing the M.Eng. degree in information
science and technology with the Vidyasirimedhi
Institute of Science and Technology, Thailand. His
research interests include routing, datacenter net-
working, and optimization.

Sucha Supittayapornpong (Member, IEEE)
received the B.Eng. degree in computer engineering
from Kasetsart University, the M.Eng. degree in
telecommunications from the Asian Institute of
Technology, and the Ph.D. degree in electrical
engineering from the University of Southern
California. He is currently a Faculty Member
with the School of Information Science and
Technology, Vidyasirimedhi Institute of Science and
Technology, Thailand. His research interests include
datacenter networking, performance optimization,
and operations research.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3422604.3425945
http://dx.doi.org/10.1145/2829988.2787472
http://dx.doi.org/10.1145/800076.802479
http://dx.doi.org/10.1137/0211027
http://dx.doi.org/10.1145/1374376.1374415
http://dx.doi.org/10.1145/780542.780599
http://dx.doi.org/10.1145/863955.863991
http://dx.doi.org/10.1145/780542.780608
http://dx.doi.org/10.1145/3341302.3342086
http://dx.doi.org/10.1145/3452296.3472913
http://dx.doi.org/10.1145/2592798.2592803
http://dx.doi.org/10.1145/2592798.2592803
http://dx.doi.org/10.1145/2592798.2592803

CHITAVISUTTHIVONG et al.: OPTIMAL OBLIVIOUS ROUTING WITH CONCAVE OBJECTIVES FOR STRUCTURED NETWORKS 13

Pooria Namyar received the bachelor’s degree in
electrical engineering from the Sharif University of
Technology, Iran, in 2019. He is currently pursu-
ing the Ph.D. degree in electrical engineering with
the University of Southern California. His research
interests include optimizing the performance and
availability of large-scale cloud systems.

Mingyang Zhang received the Ph.D. degree in
computer science from the University of Southern
California. He is currently a Software Engineer with
Google. His research interests include datacenter
networks and systems.

Minlan Yu received the B.A. degree in computer
science and mathematics from Peking University and
the M.A. and Ph.D. degrees in computer science
from Princeton University. She is currently a Gordon
McKay Professor with the Harvard School of Engi-
neering and Applied Science. Her research interests
include data networking, distributed systems, enter-
prise and data center networks, and software-defined
networking.

Ramesh Govindan (Fellow, IEEE) is currently the
Northrop Grumman Chair of Engineering and a Pro-
fessor in computer science and electrical engineer-
ing with the University of Southern California. His
research interests include routing and measurements
in large internets, networked sensing systems, and
mobile computing systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Vidyasirimedhi Institute of Science and Technology. Downloaded on April 14,2023 at 02:13:06 UTC from IEEE Xplore. Restrictions apply.

