
Designing Optimal Compact Oblivious Routing for
Datacenter Networks in Polynomial Time

Kanatip Chitavisutthivong†, Chakchai So-In‡, Sucha Supittayapornpong†
†Vidyasirimedhi Institute of Science and Technology, Thailand

‡Khon Kaen University, Thailand

Abstract—Recent datacenter network topologies are shift-
ing towards heterogeneous and structured topologies for high
throughput, low cost, and simple manageability. However, they
rely on sub-optimal routing approaches that fail to achieve their
designed capacity. This paper proposes a process for designing
optimal oblivious routing that is programmed compactly on pro-
grammable switches. The process consists of three contributions
in tandem. We first transform a robust optimization problem
for designing oblivious routing into a linear program, which
is solvable in polynomial time but cannot scale for datacenter
topologies. We then prove that the repeated structures in a
datacenter topology lead to a structured optimal solution. We
use this insight to formulate a scalable linear program, so an
optimal oblivious routing solution is obtained in polynomial time
for large-scale topologies. For real-world deployment, the optimal
solution is converted into forwarding rules for programmable
switches with stringent memory. With this constraint, we utilize
the repeated structures in the optimal solution to group the
forwarding rules, resulting in compact forwarding rules with a
much smaller memory requirement. Extensive evaluations show
our process i) obtains optimal solutions faster and more scalable
than a state-of-the-art technique and ii) reduces the memory
requirement by no less than 90% for most considered topologies.

I. INTRODUCTION

The design of network topologies for data centers is cur-
rently shifting towards heterogeneous, structured topologies
for high capacity, low cost, and low manageability [1], [2].
This attempts to replace the folded-Clos family, including
FatTree [3], Google’s Jupiter [4], Facebook’s Fabric [5],
and Microsoft’s VL2 [6]. Alternative topologies have been
proposed, such as Xpander [7], FatClique [2], DRing [8],
SlimFly [9], and other server-centric networks, where servers
have routing capability, such as BCube [10] and DCell [11].
However, some of them [2], [7], [8], [11] rely on sub-optimal
routing approaches, while the others [9], [10] use dynamic
routing that requires specialized hardware. This leads to an
active research problem of how to design oblivious routing
that achieves designed capacity without specialized hardware
for these and future topologies [12].

The oblivious routing approach is widely used in produc-
tion networks because of its robustness and simplicity. The
routes from every source to every destination are designed
to be robust to traffic variation, so neither re-configuration

This work was supported by Office of the Permanent Secretary, Ministry of
Higher Education, Science, Research and Innovation (OPS MHESI), Thailand
Science Research and Innovation (TSRI), Vidyasirimedhi Institute of Science
and Technology (VISTEC) under Grant No. RGNS 65-216.

Fig. 1. The design process of optimal compact oblivious routing.

nor dynamic routing is required when traffic changes. For
example, the folded-Clos family often employs the Equal-Cost
Multi Paths (ECMP) routing approach [13] that splits traffic
equally across all equal-cost paths, whose cost is independent
of traffic. Another oblivious routing approach is Valiant Load
Balancing (VLB) [14], [15], in which a traffic from a source is
split equally to a set of intermediate switches, each then routes
the received traffic to a destination. While, the ECMP and
VLB approaches are optimal respectively for the folded-Clos
and clique networks, they are sub-optimal for the alternative
topologies due to topological differences.

Generally, designing an optimal oblivious routing solution
for an arbitrary network topology is equivalent to solving a
robust optimization problem [12], [15]–[17]. The work in [16]
views this problem as a game and derived a linear program for
intra-domain networks, albeit small-scale networks in compar-
ison to datacenter networks. The recent work in [12] exploits
the repeated network structures to reduce the complexity of a
robust optimization problem, so an optimal oblivious routing
solution is obtained for larger network sizes. In short, the first
work can obtain the optimal routing solution in polynomial
time (in the size of input instance, which is extremely large
for large-scale networks), while the second work can scale to
larger networks but could take non-polynomial time due to the
complexity of robust optimization. This beg an open question:
Could we design optimal oblivious routing in polynomial time
that also scales for large datacenter networks to achieve the
best of both worlds?

The memory constraint is another important issue for
the real-world deployment of the oblivious routing. After
an optimal routing solution is obtained, it is converted to
forwarding rules that determine how traffic is split at each
switch in a network. These rules are stored on switches with
limited memory capacity, which becomes an issue for large-
scale datacenter networks with thousands of destinations. The
previous work in [18] trade-off split accuracy with memory

requirement, so the rules can fit available memory. This beg
another question: Could we reduce the memory requirement
given an optimal oblivious routing solution?

In this paper, we propose a process for designing optimal
compact oblivious routing for datacenter networks to address
the two challenges above, as shown in Figure 1. We first
formulate an oblivious routing problem as robust optimization
for general datacenter networks, including those alternative
topologies to the folded-Clos family. We then transform the
robust optimization into a linear program using decompo-
sition and duality techniques. This reduces the complexity
of optimal oblivious routing design to just solving a linear
program that is polynomial-time solvable and is tractable for
small-scale datacenter networks. Since datacenter networks
usually have repeated structures, we show the existence of
an automorphism-invariant optimal solution, whose variables
have repeated values. From this insight, we formulate a
scalable linear program that can scale to larger network sizes.
As a result, we can design optimal oblivious routing for large-
scale datacenter networks with polynomial-time complexity,
which addresses the first challenge. For the second challenge,
we exploit the structure of the optimal oblivious routing
solution, obtained from the scalable linear program, to group
the forwarding rules. This grouping compacts the forwarding
rules and significantly reduces memory requirement, which
addresses the second challenge.

Extensive evaluations of the scalable linear program on
various datacenter network topologies and sizes show that the
linear program is faster and more scalable than the state-of-
the-art technique in [12] and another linear formulation in [16].
Moreover, the forwarding rules grouping significantly reduces
forwarding rules’ memory requirement by no less than 90%
for the majority of considered topologies. We also provide
possible applications of the optimal compact oblivious routing.

The contributions of this work are summarized as follows:
• We transform a robust optimization problem for designing

oblivious routing into a linear program, so an optimal
oblivious routing solution is obtained in polynomial time
for small-scale topologies.

• We prove that a datacenter network topology with re-
peated structures has an optimal solution whose variables
also have repetition. We use this insight to formulate a
scalable linear program that is solvable in polynomial
time and is tractable for larger topologies.

• We utilize the structure of the optimal solution of the
scalable linear program, to compact forwarding rules and
reduce memory requirement for real-world deployment.

Besides, we release our code to the research community.
This paper is organized as follows. Section II describes

the model of datacenter networks and the oblivious routing
problem. Section III transforms the problem into a linear
program. The repeated network structures are exploited to
improve scalability in Section IV. Section V describes a
grouping technique to compact forwarding rules for real-world
deployment. Extensive evaluations are provided in Section VI
before the conclusion in Section VII.

Fig. 2. A simple network consists of routing-capable nodes, routing-incapable
nodes, and links. These nodes and links could have different capacities.

II. SYSTEM MODEL

We formally model datacenter networks, traffic demands,
and routing components before formulating an oblivious rout-
ing optimization problem.

A. Network model

Our network model generalizes the previous model in [12]
to capture both the traditional server-switch architecture [1],
[2], [7]–[9], [19], [20] and the server-centric architecture [10],
[11]. The differences between these architectures are that every
server in the former has only one direct connection to a
switch and has no routing capability, while every server in
the latter has the routing capability and may have multiple
direct connections to other servers or switches. To deal with
these differences, we model a datacenter network by a graph
with two types of nodes: routing-capable nodes and routing-
incapable nodes, as shown in Figure 2. Let S and P be
the sets of routing-capable nodes and routing-incapable nodes
respectively. The set of all nodes is denoted by N = S ∪ P .

Nodes are interconnected by links. Node i and node j are
connected by link (i, j) with capacity Cij . We denote the set
of all links by L. Every link is bi-directional, so (i, j) ∈ L if
and only if (j, i) ∈ L and Cij = Cji for every (i, j) ∈ L.

B. Traffic model

Node n has capacity Hn to independently send and receive
traffic for every n ∈ N . We denote the set of nodes that have
positive capacities by H = {n ∈ N : Hn > 0}. A commodity
(u, v) is a pair of source node u and destination node v where
both nodes have positive capacity. We denote the set of all
commodities by C =

{︁
(u, v) ∈ H2 : u ̸= v

}︁
.

Node u sends traffic to node v and creates a traffic demand
for commodity (u, v). This traffic demand is denoted by tuv .
The traffic demands from every commodity form a traffic
matrix [tuv] ∈ R|C|

+ , where R+ is a set of non-negative reals.
Since traffic matrices inside a datacenter network could

be unpredictable, we consider the set of all possible traffic
matrices [12], [15], [21]:

T =

⎧⎨⎩
∑︁

v∈H−u
tuv ≤ Hu ,∀u ∈ H∑︁

u∈H−v
tuv ≤ Hv ,∀v ∈ H

tuv ∈ R+ ,∀(u, v) ∈ C

⎫⎬⎭ , (1)

where A−x contains all members of A but excludes x, i.e.,
A−x = A\{x}. The first constraint in (1) limits the amount
of traffic generated from each node by the node’s capacity.

Similarly, the second constraint bounds the amount of traffic
each node can receive by the node’s capacity.

C. Routing model

We adopt the multi-commodity flow model with the com-
modity set C. For every commodity (u, v) ∈ C, the share of
commodity’s demand over link (i, j) is denoted by fuv

ij for
every link (i, j) ∈ L. Notice that, given a traffic demand tuv ,
the amount of the demand over link (i, j) is tuvfuv

ij . These
shares over all links in the network,

{︁
fuv
ij : (i, j) ∈ L

}︁
, form

the shares of commodity (u, v). We denote the shares of all
commodities by [fuv

ij], where [fuv
ij] ∈ R|C|×|L|

+ .
Recall that there are two node types. A routing-capable node

can route every traffic independent of the traffic’s commodity.
A routing-incapable node can only route traffic corresponding
to the commodities involving the node, i.e., the node is either a
source or a destination of the traffic. Define I [x] as an indicator
function that returns 1 if the statement x is true; otherwise 0.
We define the set of all possible shares as follows:

F =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︁
j∈O(i)

fuv
ij −

∑︁
j∈I(i)

fuv
ji = I [i = u]− I [i = v]

,∀(u, v) ∈ C,∀i ∈ N
fuv
ij = 0 ,∀(u, v) ∈ C,∀(i, j) ∈ N × P−v

fuv
iu = fuv

vi = 0,∀(u, v) ∈ C,∀i ∈ N
fuv
ij ∈ R+ ,∀(u, v) ∈ C,∀(i, j) ∈ L

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(2)
where O(i) and I(i) are respectively the set of nodes corre-
sponding to the outgoing links from node i and the set of
nodes corresponding to the incoming links to node i. The
first constraint is the share conservation where the total share
at every source and every destination is one. The second
constraint enforces that every routing-incapable node does
not involve in the routes of other commodities unrelated to
the node. The third constraint ensures that both source and
destination are the endpoints of their corresponding traffic.

D. Oblivious routing formulation

Given shares [fuv
ij] and a traffic matrix [tuv], we define the

congestion ratio of link (x, y) by the proportion of total traffic
demand on the link to the link’s capacity [16], [17]:∑︂

(u,v)∈C

tuvfuv
xy

Cxy
.

An oblivious routing problem aims to design the shares
[fuv

ij] that minimizes this congestion ratio across every link
in the network and under all possible traffic demands.1 We
formulate this oblivious routing problem as follows:

min
[fuv

ij]∈F
max

(x,y)∈L,
[tuv]∈T

∑︂
(u,v)∈C

tuvfuv
xy

Cxy
. (3)

This formulation has two challenges: the robust objective
with infinite possibilities of traffic demands and the scalability
of the formulation for large networks. The first challenge stems

1This is equivalent to the performance ratio in [16], [17] when the minimum
possible maximum link utilization is ignored.

from the fact that the congestion ratio is a function of every
traffic demand in the traffic set T , so the entire set must
be considered. The second challenge is due to the sizes of
datacenter networks, resulting in large numbers of decision
variables and constraints in the formulation. We tackle the
two challenges successively in Section III and Section IV.

III. LINEAR FORMULATION

This section tackles the challenge of the robust objective by
transforming the robust formation in (3) to a simpler linear
program, so an optimal oblivious routing solution can be
designed for appropriate network sizes. This transformation is
inspired by [16], which considers a different network model
without the traffic set and uses different proof techniques.

We first observe that each link has its worst-cast traffic
matrix, yielding its maximal congestion ratio. Therefore, we
introduce traffic matrix [tuvxy] ∈ T for every link (x, y) to
decouple the inner maximization in (3) as follows:

max
(x,y)∈L,
[tuv]∈T

∑︂
(u,v)∈C

tuvfuv
xy

Cxy
= max

(x,y)∈L
max

[tuv
xy]∈T

∑︂
(u,v)∈C

tuvxyf
uv
xy

Cxy

(4)
The above decomposition allows us to consider the sub-

problem, max[tuv
xy]∈T

∑︁
(u,v)∈C

tuv
xyf

uv
xy

Cxy
, which finds the worst-

case congestion ratio of link (x, y), in isolation. Given a
considered link (x, y) and a share solution [fuv

ij], this sub-
problem is rewritten as the following formulation:

Maximize
∑︂

(u,v)∈C

tuvxyf
uv
xy

Cxy

Subject to
∑︂

v∈H−u

tuvxy ≤ Hu ,∀u ∈ H

∑︂
u∈H−v

tuvxy ≤ Hv ,∀v ∈ H

tuvxy ∈ R+ ,∀(u, v) ∈ C.

(5)

Instead of solving this sub-problem directly, we consider its
dual problem with dual variables [βu

xy]u∈H and [γu
xy]u∈H:

Minimize
∑︂
u∈H

Hu

(︁
βu
xy + γu

xy

)︁
Subject to

fuv
xy

Cxy
− βu

xy − γv
xy ≤ 0 ,∀(u, v) ∈ C

βu
xy ∈ R+, γu

xy ∈ R+ ,∀u ∈ H.

(6)

Lemma 1. For a given link (x, y) and a share solution [fuv
ij],

the formulation in (6) is the dual of the problem in (5).

Proof: Fix a link (x, y) and a share solution [fuv
ij]. We

derive a dual problem by the duality technique [22]. Define
non-negative dual variables

[︁
βu
xy

]︁
u∈H ,

[︁
γu
xy

]︁
u∈H respectively

for the first two inequality constraints of the sub-problem in
(5). We define the Lagrangian associated with this problem as

L
(︁[︁
tuvxy
]︁
,
[︁
βu
xy

]︁
,
[︁
γv
xy

]︁)︁
=

∑︂
(u,v)∈C

tuvxyf
uv
xy

Cxy

−
∑︂
u∈H

βu
xy

(︄ ∑︂
v∈H−u

tuvxy −Hu

)︄
−
∑︂
v∈H

γv
xy

(︄ ∑︂
u∈H−v

tuvxy −Hv

)︄

=
∑︂

(u,v)∈C

tuvxy

(︃
fuv
xy

Cxy
− βu

xy − γv
xy

)︃
+
∑︂
u∈H

Hu

(︁
βu
xy + γu

xy

)︁
.

The dual function is defined as

D
(︁[︁
βu
xy

]︁
,
[︁
γv
xy

]︁)︁
= max

[tuv
xy]∈R|C|

+

L
(︁[︁
tuvxy
]︁
,
[︁
βu
xy

]︁
,
[︁
γv
xy

]︁)︁
.

Note that this dual function is undefined, D
(︁[︁
βu
xy

]︁
,
[︁
γv
xy

]︁)︁
→

∞ when
fuv
xy

Cxy
− βu

xy − γv
xy > 0 for some commodity

(u, v) ∈ C. We only consider the well-defined dual function
D
(︁[︁
βu
xy

]︁
,
[︁
γv
xy

]︁)︁
=
∑︁

u∈H Hu

(︁
βu
xy + γu

xy

)︁
when

fuv
xy

Cxy
−

βu
xy − γv

xy ≤ 0 for every commodity (u, v) ∈ C. This is
because a dual problem will minimize this dual function,
i.e., min[βu

xy]∈R|H|
+ ,[γv

xy]∈R|H|
+

D
(︁[︁
βu
xy

]︁
,
[︁
γv
xy

]︁)︁
, resulting in

the dual problem in (6), which proves the lemma.
We use the dual problem in (6) to transform the robust

optimization problem in (3) into the following linear program:

Minimize η

Subject to
∑︂
u∈H

Hu

(︁
βu
ij + γu

ij

)︁
≤ η ,∀(i, j) ∈ L

fuv
ij

Cij
− βu

ij − γv
ij ≤ 0 ,∀(u, v) ∈ C,∀(i, j) ∈ L

βu
ij ∈ R+, γu

ij ∈ R+ ,∀u ∈ H,∀(i, j) ∈ L
[fuv

ij] ∈ F .
(7)

Theorem 1. The robust oblivious routing formulation in (3)
and the linear program in (7) are equivalent.

Proof: The proof replaces the sub-problem in (5) with
the dual problem in (6) on the right-hand side of equation (4).
Let gxy([fuv

ij]) represent the dual problem in (6) of link (x, y)
given routing variables [fuv

ij]. The replacement yields:

max
(i,j)∈L,
[tuv]∈T

∑︂
(u,v)∈C

tuvfuv
ij

Cij
= max

(x,y)∈L
gxy([f

uv
ij]).

Since the left-hand side of the above equation is the inner
maximization of the oblivious routing formulation in (3), it
follows that the formulation is equivalent to

min
[fuv

ij]∈F
max

(x,y)∈L
gxy([f

uv
ij]).

The above min-max problem can be transformed into a linear
program with an auxiliary variable η as follows:

Minimize η

Subject to gxy([f
uv
ij]) ≤ η ,∀(x, y) ∈ L

[fuv
ij] ∈ F .

Fig. 3. Automorphism example. Nodes in the right network are nodes in the
left network relabeled by the automorphism ϕ (n) = n − 3 mod 12. Both
networks have the same adjacency, link capacity distribution, node types, and
node capacity distribution.

Finally, replacing the dual problem gxy([f
uv
ij]) with its objec-

tive function and constraints in (6) gives the linear program
in (7) and proves the theorem.

The implication of Theorem 1 is that an optimal oblivious
routing solution of the robust formulation in (3) can be
obtained by solving the linear program in (7). Since linear
programming is solvable in polynomial time [23], [24], we can
design optimal oblivious routing in polynomial time for ap-
propriate network sizes, in terms of variables and constraints.
However, the scales of datacenter networks could render the
linear program in (7) intractable in practice. The next section
tackles this scalability issue.

IV. SCALABLE LINEAR FORMULATION

This section tackles the scalability of the linear formula-
tion in (7) for large-scale datacenter networks. We exploit
the repeated structures in a network topology to scale the
formulation. This idea is inspired by the work in [12], which
is non-polynomial time and has no routing-incapable nodes.

A. Automorphism in datacenter networks

The repeated structures in a datacenter network is captured
by graph automorphism. Graph automorphism is a mapping of
nodes in a graph to the same set of nodes in the same graph
such that the new graph with the mapped nodes is similar to the
original graph [25]. In particular, the described automorphism
preserves node adjacency. We extend this automorphism to our
network model by the definition of our automorphism.

Definition 1. A mapping function ϕ : N → N is an
automorphism if the following conditions hold:

1) Adjacency: (ϕ (i) , ϕ (j)) ∈ L, ∀(i, j) ∈ L.
2) Link capacity: Cϕ(i)ϕ(j) = Cij , ∀(i, j) ∈ L.
3) Type: ϕ (n) ∈ S, ∀n ∈ S and ϕ (n) ∈ P , ∀n ∈ P .
4) Node capacity: Hϕ(n) = Hn, ∀n ∈ N .

The automorphism in Definition 1 is illustrated in Figure 3.
The first condition ensures that the adjacency between nodes
are preserved under the automorphism. The second condition
keeps the capacity of every link the same after the automor-
phism mapping. The type and capacity of every node also stay
the same under the automorphism from the last two conditions.

Let Φ be the set of all automorphisms satisfying Defini-
tion 1. Since the numbers of nodes and links in a network are

Fig. 4. A graph with colored vertices is constructed by Algorithm 1 from the
simple network in Figure 2.

finite, there are finite permutations, and the cardinality of the
set is finite, |Φ| < ∞. In addition, we define Φ̂ as the set of
generators that entirely generate the automorphism set Φ. This
generator set can be obtained from off-the-shelf software, such
as nauty [26].

Algorithm 1: Graph construction for generator set Φ̂
Initialize a graph with a vertex set V and an edge set E
Initialize dictionaries Γ,W,W ′ with values as colors
for n ∈ N do
V ← V ∪ {n}
if (I [n ∈ S] , Hn) /∈W then

W [(I [n ∈ S] , Hn)]← new color
Γ[n]←W [(I [n ∈ S] , Hn)]

for (i, j) ∈ L do
Let n be a new vertex
V ← V ∪ {n}
E ← E ∪ {(i, n), (n, j)}
if Cij /∈W ′ then

W ′[Cij]← new color
Γ[n]←W ′[Cij]

return a graph with sets V, E and dictionary Γ

To obtain the generator set Φ̂, we encode the four properties
in Definition 1 on a network topology as a graph with colored
vertices by Algorithm 1. Figure 4 shows the graph constructed
from the network in Figure 2 by the algorithm. The algorithm
constructs a graph with edges and colored vertices from a
network topology as follows. Vertices associated with nodes
having the same type and node capacity are assigned the same
color. Any two vertices associated with nodes having different
types or different capacities are given different colors. This
construction ensures the preservation of node type and node
capacity in the generator set. For links in the network, each
link yields a new vertex with two edges, each connects to the
vertex associated with each side of the link. Vertices associated
with links having the same capacity are assigned the same
color. Any two vertices associated with links having different
capacities are given different colors. This construction ensures
the properties on adjacency and link capacity are enforced.

We use the automorphism set Φ and its generator set Φ̂
to identify a special optimal oblivious routing solution of the
linear program in (7) in the next section.

B. Automorphism-invariant optimal solution

In this section, we show that the repeated structures in
a datacenter network lead to an optimal oblivious routing
solution that also has repeated structures.

We first argue that the linear program in (7) has an optimal
solution. We know that the robust optimization in (3) aims
to minimize the congestion ratio over the traffic set, which is
assumed to be nonempty, and the sum of all link capacities
in the network is finite. Therefore, the minimal congestion
ratio exists. Since the linear program in (7) is equivalent to
the robust optimization in (3) by Theorem 1, it must have an
optimal solution. Let

(︁
η∗, [βu∗

ij], [γ
u∗
ij], [f

uv∗
ij]

)︁
be an optimal

solution of the linear program in (7). We then show that there
is another optimal solution that can be constructed from an
automorphism.

Lemma 2. A solution
(︁
η, [βu

ij], [γ
u
ij], [f

uv
ij]
)︁

is an optimal
solution of the linear program in (7) given any ϕ ∈ Φ and

η = η∗, βu
ij = β

ϕ(u)∗
ϕ(i)ϕ(j), γu

ij = γ
ϕ(u)∗
ϕ(i)ϕ(j), fuv

ij = f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) .

Proof: Fix an automorphism ϕ ∈ Φ. Since η = η∗, the
objective cost under the new solution equals the optimal objec-
tive cost. We then need to show that the solution, constructed
from the automorphism, is feasible and satisfies all constraints
in (7) and (2). We begin with the domains of variables βu

ij and
γu
ij in (7) and variables fuv

ij in (2). These domains are non-
negative reals, so the variables of the constructed solution are
in the same domains. Next, we consider the constraints in (7).

Considering the first constraint in (7) with link (i, j), we
have that∑︂

u∈H
Hu

(︁
βu
ij + γu

ij

)︁
=
∑︂
u∈H

Hϕ(u)

(︂
β
ϕ(u)∗
ϕ(i)ϕ(j) + γ

ϕ(u)∗
ϕ(i)ϕ(j)

)︂
=
∑︂
u∈H

Hu

(︂
βu∗
ϕ(i)ϕ(j) + γu∗

ϕ(i)ϕ(j)

)︂
≤ η∗ = η.

The first equality substitutes the solution and uses the node
capacity property in Definition 1. Reindexing u ∈ H leads
to the second equality. The last inequality holds because the
constraint associated with link (ϕ (i) , ϕ (j)) holds under the
optimal solution. Thus, the first constraint in (7) is satisfied.

Considering the second constraint in (7) with commodity
(u, v) and link (i, j), we have that

fuv
ij

Cij
− βu

ij − γv
ij =

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j)

Cϕ(i)ϕ(j)
− β

ϕ(u)∗
ϕ(i)ϕ(j) − γ

ϕ(v)∗
ϕ(i)ϕ(j) ≤ 0.

The first equality substitutes the solution and uses the link
capacity property in Definition 1. The last inequality holds be-
cause the constraint associated with commodity (ϕ (u) , ϕ (v))
and link (ϕ (i) , ϕ (j)) holds under the optimal solution. Thus,
the second constraint in (7) is satisfied.

We then consider the constraints in (2). Considering the
second constraint with commodity (u, v) ∈ C and link (i, j) ∈
N × P−v , we have that fuv

ij = f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) . Since node j

is routing-incapable and j ̸= v, node ϕ (j) is also routing-
incapable and ϕ (j) ̸= ϕ (v) from Definition 1. It follows

that fϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) = 0 because the optimal share of commodity

(ϕ (u) , ϕ (v)) never routes traffic over link (ϕ (i) , ϕ (j)) as
ϕ (j) ∈ P−ϕ(v). Therefore, we have fuv

ij = 0, and the second
constraint in (2) is satisfied.

Considering the third constraint in (2) with commodity
(u, v) ∈ C and node i ∈ N , we have that fuv

iu = f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(u) =

0 because the optimal share of commodity (ϕ (u) , ϕ (v)) never
routes traffic back to the traffic’s source node. A similar
argument can be applied to the constraint fuv

vi = 0 as the
optimal share of commodity (ϕ (u) , ϕ (v)) never routes traffic
away from the traffic’s destination node. Therefore, The third
constraint in (2) is satisfied. For the first constraint in (2), the
proof that the constraint is satisfied is similar to the proof in
[12] and is omitted for brevity. Thus, it holds that [fuv

ij] ∈ F .
Altogether, the solution yields the same optimal objective

cost and satisfies all constraints of the linear program in (7).
It must be an optimal solution.

The implication of Lemma 2 is that we can construct
multiple optimal solutions from an optimal solution and the
automorphism set. Next, we use these optimal solutions to
identify an optimal solution with repetitive variables.

Theorem 2. There exists an automorphism-invariant solution(︁
η̂, [β̂

u

ij], [γ̂
u
ij], [f̂

uv

ij]
)︁

that is optimal for the linear program in
(7) and satisfies:

f̂
uv

ij = f̂
ϕ(u)ϕ(v)

ϕ(i)ϕ(j) , β̂
u

ij = β̂
ϕ(u)

ϕ(i)ϕ(j), γ̂u
ij = γ̂

ϕ(u)
ϕ(i)ϕ(j), ∀ϕ ∈ Φ.

Proof: We first construct a solution before showing that
it is optimal and satisfies the automorphism-invariant property.
Let

(︁
η̂, [β̂

u

ij], [γ̂
u
ij], [f̂

uv

ij]
)︁

be a solution such that

η̂ = η∗, f̂
uv

ij =
1

|Φ|
∑︂
ϕ∈Φ

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) ,

β̂
u

ij =
1

|Φ|
∑︂
ϕ∈Φ

β
ϕ(u)∗
ϕ(i)ϕ(j), γ̂u

ij =
1

|Φ|
∑︂
ϕ∈Φ

γ
ϕ(u)∗
ϕ(i)ϕ(j),

where
(︁
η∗, [βu∗

ij], [γ
u∗
ij], [f

uv∗
ij]

)︁
is an existing optimal solution.

Since η̂ = η∗, the objective cost under the solution equals
to the optimal cost. We then need to show that all constraints
in (7) are satisfied.

The linearity in the construction of the solution implies that
i) the domains of variables βu

ij and γu
ij in (7), ii) the domains

of variables fuv
ij in (2), and iii) the second and third constraints

in (2) are satisfied. The proof that the first constraint in (2)
is satisfied is similar to the proof in [12] and is omitted for
brevity. We next consider the other constraints in (7).

Considering the first constraint in (7) with link (i, j), we
have that

∑︂
u∈H

Hu

⎡⎣ 1

|Φ|
∑︂
ϕ∈Φ

β
ϕ(u)∗
ϕ(i)ϕ(j) +

1

|Φ|
∑︂
ϕ∈Φ

γ
ϕ(u)∗
ϕ(i)ϕ(j)

⎤⎦
=

1

|Φ|
∑︂
ϕ∈Φ

∑︂
u∈H

Hϕ(u)

(︂
β
ϕ(u)∗
ϕ(i)ϕ(j) + γ

ϕ(u)∗
ϕ(i)ϕ(j)

)︂
≤ η∗.

The first equality uses the node capacity property in Def-
inition 1. The last inequality uses the fact that the inner

summation is at most η∗ since the optimal solution satisfies
the constraint with link (ϕ (i) , ϕ (j)). Therefore, the first
constraint in (7) is satisfied.

Considering the second constraint in (7) with commodity
(u, v) and link (i, j), we have that

1

Cij |Φ|
∑︂
ϕ∈Φ

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) −

1

|Φ|
∑︂
ϕ∈Φ

β
ϕ(u)∗
ϕ(i)ϕ(j)−

1

|Φ|
∑︂
ϕ∈Φ

γ
ϕ(v)∗
ϕ(i)ϕ(j)

=
1

|Φ|
∑︂
ϕ∈Φ

⎡⎣fϕ(u)ϕ(v)∗
ϕ(i)ϕ(j)

Cϕ(i)ϕ(j)
− β

ϕ(u)∗
ϕ(i)ϕ(j) − γ

ϕ(v)∗
ϕ(i)ϕ(j)

⎤⎦ ≤ 0.

The first equality uses the link capacity property in Defini-
tion 1. The last inequality uses the fact that the expression
in the summation is non-positive since the optimal solution
satisfies the constraint with commodity (ϕ (u) , ϕ (v)) and
link (ϕ (i) , ϕ (j)). Therefore, the second constraint in (7) is
satisfied. Altogether, the solution is feasible and optimal.

Finally, we show the solution satisfies the automorphism-
invariant property. We first consider β̂

u

ij and any ϕ ∈ Φ:

β̂
ϕ(u)

ϕ(i)ϕ(j) =
1

|Φ|
∑︂
ϕ′∈Φ

β
ϕ′(ϕ(u))∗
ϕ′(ϕ(i))ϕ′(ϕ(j))

=
1

|Φ|
∑︂
ϕ′′∈Φ

β
ϕ′′(u)∗
ϕ′′(i)ϕ′′(j) = β̂

u

ij .

The second equality used the fact that the set of all automor-
phism mapping is a group and the summation is over the entire
set. Therefore, every variable β̂

u

ij is automorphism-invariant.
Similar arguments prove the automorphism-invariant property
of variables f̂

uv

ij and γ̂u
ij and are omitted. Thus, the solution

is automorphism-invariant. This proves the theorem.
The implication of Theorem 2 is that the linear program

in (7) always has an optimal solution whose variables form
groups. Every variable in each group takes the same value,
i.e., β̂

u

ij = β
ϕ(u)
ϕ(i)ϕ(j) for all ϕ ∈ Φ. We use this insight to

formulate a new linear program targeting the automorphism-
invariant optimal solution to improve scalability.

C. Representative variables

We first identify how variables [βu
ij], [γ

u
ij], [f

uv
ij] of the linear

program in (7) form groups, so the variables in each group can
be represented by a representative variable. The challenge of
this identification is its combinatorial nature.

We observe from Theorem 2 that the variables [βu
ij] and [γu

ij]
share the same group relations as they share the same index set,
H× L. We therefore develop an efficient algorithm to group
the variables based on the generator set Φ̂ as summarized in
Algorithm 2. The algorithm searches over the index set. It
takes an index from the set and utilizes the generator set to find
all indices sharing the same group. Once a group is formed,
the algorithm takes an unvisited index and continues the search
process until all groups are formed. The time-complexity of
Algorithm 1 is O(|H| |L| |Φ̂|), since every index is visited once
and |Φ̂| indices are searched over per visited index. Using the

generator set is more efficient than the entire automorphism
set, which is exponentially large.

The algorithm outputs the representative index set Ĝ and
the dictionary ω containing automorphisms that can map each
variable to its representative. In particular, let β̂

u

ij and γ̂u
ij be

representative variables for every (u, i, j) ∈ Ĝ. They represent
variables [βu

ij] and [γu
ij] of the linear program in (7) as follows:

βu
ij

represented by
========⇒ φ

[︁
βu
ij

]︁
= β̂

ϕ(u)

ϕ(i)ϕ(j) where ϕ = ω [u, i, j]

γu
ij

represented by
========⇒ φ

[︁
γu
ij

]︁
= γ̂

ϕ(u)
ϕ(i)ϕ(j) where ϕ = ω [u, i, j]

for every (u, i, j) ∈ H × L. We use φ[x] to denote the
representative of x.

Algorithm 2: Identification of [β̂
u

ij] and [γ̂u
ij]

Initialize empty sets Q,Z, Ĝ
Initialize dictionaries D,ω
for (u, i, j) ∈ H × L do

if (u, i, j) ∈ Z then
continue

Ĝ ← Ĝ ∪ {(u, i, j)}
D[u, i, j]← ϕidentity
Q ← Q∪ {(u, i, j)}
while Q is not empty do

Pop (a, b, c) from Q
Z ← Z ∪ {(a, b, c)}
for ϕ ∈ Φ̂ do

if (ϕ (a) , ϕ (b) , ϕ (c)) /∈ Z then
Q ← Q∪ {(ϕ (a) , ϕ (b) , ϕ (c))}
D[ϕ (a) , ϕ (b) , ϕ (c)]← ϕ (D[a, b, c])

for (u, i, j) ∈ H × L do
ω [u, i, j]← (D[u, i, j])−1

return representative index set Ĝ and dictionary ω

Algorithm 3: Construction of index set M̂
Initialize empty sets Z,M̂
for (i, j) ∈ L do

Let e = (auij , buij)(u,i,j)∈Ĝ where auij and buij

are respectively the counts of representative β̂
u

ij

and γ̂u
ij in

∑︁
n∈H Hn

(︂
β̂
n

ij + γ̂n
ij

)︂
if e ∈ Z then

continue
M̂ ← M̂ ∪ {(i, j)}
Z ← Z ∪ {e}

return representative constraint indices M̂

For the share variables [fuv
ij], their groups can be obtained

from Algorithms 2 and 3 in [12], whose multi-commodity
formulation includes a related conservation constraint similar

to ours in (2). Algorithm 2 in [12] outputs the set of repre-
sentative commodities, Ĉ, and a dictionary π containing auto-
morphisms that can map each commodity to its representative
commodity. For each representative commodity (u, v) ∈ Ĉ,
Algorithm 3 in [12] outputs the set of representative links of
share variables, L̂

uv
, and a dictionary σuv containing automor-

phisms that can map each share variable to its representative.
In particular, let f̂

uv

ij be a representative share variable for
every (u, v) ∈ Ĉ and every (i, j) ∈ L̂

uv
. They represent shares

[fuv
ij] of the linear program in (7) as follows:

fuv
ij

represented by
========⇒ φ

[︁
fuv
ij

]︁
= f̂

ϕ(u)ϕ(v)

ϕ′(ϕ(i))ϕ′(ϕ(j)),

where ϕ = π [u, v] , and ϕ′ = σϕ(u)ϕ(v) [i, j] for every
(u, v, i, j) ∈ C × L.

These representatives [β̂
u

ij], [γ̂
u
ij], [f̂

uv

ij] significantly reduce
the variables of the linear program in (7), resulting in a scalable
linear program.

D. Automorphism-invariant formulation

Finally, we formulate the scalable linear program for large
networks as follows:

Minimize η

Subject to
∑︂
u∈H

Hu

(︁
φ
[︁
βu
ij

]︁
+ φ

[︁
γu
ij

]︁)︁
≤ η ,∀(i, j) ∈ M̂

f̂
uv

ij

Cij
− φ

[︁
βu
ij

]︁
− φ

[︁
γv
ij

]︁
≤ 0

,∀(u, v) ∈ Ĉ,∀(i, j) ∈ L̂
uv

β̂
u

ij ∈ R+, γ̂u
ij ∈ R+,∀(u, i, j) ∈ Ĝ

[f̂
uv

ij] ∈ F̂ ,
(8)

where the set F̂ is defined in (9).

F̂ =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︁
j∈O(i) f̂

uv

ij −
∑︁

j∈I(i) f̂
uv

ji = I [i = u]− I [i = v]

,∀(u, v) ∈ Ĉ,∀i ∈ N
f̂
uv

ij = 0 ,∀(u, v) ∈ Ĉ,∀(i, j) ∈ L̂
uv
∩ (N ×P−v)

f̂
uv

iu = f̂
uv

vi = 0,∀(u, v) ∈ Ĉ,∀(i, u), (v, i) ∈ L̂
uv

f̂
uv

ij ∈ R+ ,∀(u, v) ∈ Ĉ,∀(i, j) ∈ L̂
uv

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(9)

The set M̂ in (8) is constructed by Algorithm 3 to remove un-
necessary constraints, causing intractability for large networks.

The scalable linear program in (8) designs an optimal obliv-
ious routing solution in polynomial time for large networks. It
is faster and more scalable than the state-of-the-art technique
[12] as shown in Section VI. The next section describes how an
optimal solution is further optimized for practical deployment.

V. COMPACT FORWARDING RULES

An optimal oblivious routing solution, obtained from the
scalable formulation in (8), could be distributively deployed
on switches in a datacenter network. Every switch decides how

Fig. 5. Optimal oblivious routing solution of commodities (0, 4) and (0, 10),
which have the same representative, is presented. The black arrows represent
similar split weights that can be grouped at each corresponding node.

traffic is split over next-hop switches for each commodity.2 In
particular, switch i splits the traffic of commodity (u, v) to
next-hop switch j over link (i, j) with weight

wuv
ij =

fuv
ij∑︁

j′∈O(i) f
uv
ij′

,∀(u, v) ∈ C,∀i ∈ N ,∀j ∈ O(i).

(10)
These weights could be configured into programmable

switches in the form of forwarding rules [18], [27], [28].
However, a switch has limited memory for storing the rules
from multiple commodities in a large datacenter network. This
practical limitation could hinder the deployment of the optimal
oblivious routing solution.

We observe that some rules, derived from the commodi-
ties having the same representative, are similar as shown
in Figure 5. We use this insight to group the forwarding
rules in order to reduce memory requirement. Algorithm 4
summarized our grouping method. For each node in a network,
the commodities having the same representative are grouped
by the similarity of split weights, i.e., (i, j, φ

[︁
fxy
ij

]︁
)(i,j)∈O(n)

(ignoring the common denominator in (10)). The commodities
having similar split weights form a group, so one collection
of forwarding rules is sufficient for these commodities. The
algorithm outputs the collection of grouped rules, {Wn}n∈N .
For node n, each collection of grouped rules is stored in the
dictionary Wn whose key e represents a collection of split
weights and the value Wn[e] is the set of commodities using
the weights. Note that Algorithm 4 is highly parallelizable as
the grouping process can be parallelized for each node.

In short, Algorithm 4 utilizes the repeated structures in the
optimal oblivious routing solution, which is automorphism
invariant, to reduce memory requirement for the deployment
of forwarding rules in real-world switches. In addition, if
the reduced requirement exceeds the available memory of a
switch, an approximation technique [18] could be applied to
our grouped rules to trade-off between optimality and available
memory. In other words, our grouping method circumvents the
unnecessary trade-off when it is avoidable.

VI. EVALUATION

Our scalable linear program in (8) is evaluated over various
datacenter network topologies and sizes. Its scalability is eval-

2TCP reordering effect can be avoided by splitting traffic based on flows
instead of packets.

Algorithm 4: Forward-rule grouping
Initialize empty set Q
Initialize dictionary {Wn}n∈N
for n ∈ N do
Q ← Q∪ {n}
for (u, v) ∈ Ĉ do

for (x, y) represented by (u, v) do
Let e = (i, j, φ

[︁
fxy
ij

]︁
)(i,j)∈O(n)

if e /∈Wn then
Wn[e]← ∅

Wn[e]←Wn[e] ∪ {(x, y)}

return Grouped forwarding rules {Wn}n∈N

0

1 2

3

4 5

6

7 8

9

10 11

0

1 2

3

4 5

6

7 8

9

10 11

Commodity (0, 1)
0

1 2

3

4 5

6

7 8

9

10 11

Commodity (0, 3)
0

1 2

3

4 5

6

7 8

9

10 11

Commodity (1, 2)
0

1 2

3

4 5

6

7 8

9

10 11

Commodity (1, 6)

Fig. 6. The optimal oblivious routing solution of the network in Figure 2.
The four commodities correspond to all combinations of node types.

uated in terms of computation times and problem sizes. The
efficiency of our grouping method in Algorithm 4 is evaluated
for the same topologies. Ultimately, we show the applicability
of our work for an existing server-centric topology.

Every evaluation is executed on a commodity computer with
an Intel Core i9-12900K processor and 128GB memory. All
linear programs are solved by Gurobi [29]. We use nauty [26]
to compute generator sets.

A. Topology setting and brief background

We motivate the topologies used in our evaluation as
follows. FatClique is designed for low-cost manageability,
regarding topology deployment and expansion [2]. SlimFly
focuses on throughput performance by the use of low diameter
graphs with high-radix switches [9]. BCube aims for shipping-
container-based datacenters [10]. FatClique and SlimFly fol-
low the server-switch architecture, while BCube belongs to the
server-centric architecture.

These topologies are constructed as follows. For FatClique,
we set the numbers of switches in a sub-block, sub-blocks in
a block, and blocks to an identical value. We vary this value
from 2 to 12. For SlimFly, we use its provided topologies
with the number of network radices ranging from 5 to 43.
For BCube, each topology is built from 4-port switches, and
we vary the number of levels of switches from 2 to 5. The
maximum number of nodes in the topologies generated by
these settings is 2304.

B. Correctness of optimal solutions

In every evaluation, we confirm the correctness of the
optimal solutions obtained from (8) by comparing them with
the solutions from the state-of-the-art technique in [12]. When

0 500 1000 1500 2000 2500
Number of nodes

0

6

12

18

24
Ti

m
e

(h
ou

r)
FatClique by [16]
SlimFly by [16]
BCube by [16]

FatClique by [12]
SlimFly by [12]
BCube by [12]

FatClique by this work
SlimFly by this work
BCube by this work

Fig. 7. The optimization time at different sizes of FatClique, SlimFly and
BCube. The maximum times of the scalable formulation are 0.008 sec. for
FatClique, 2.97 min. for SlimFly, and 0.026 sec. for BCube. Note that SlimFly
topologies beyond 50 nodes cannot be solved by [16] due to insufficient
computing memory.

the technique fails to compute solutions, we adopt another
technique in [30] to validate our solutions.

Moreover, as shown in Figure 6, the scalable linear program
in (8) handles routing-incapable nodes correctly for the simple
network in Figure 2. Every routing-incapable node that is
unrelated to a considered commodity does not involve in the
commodity’s routing.

C. Scalability in terms of computation time

We vary the sizes of FatClique, SlimFly, and BCube. We
record the optimization times of our scalable formulation in
(8), the state-of-the-art technique in [12], and the other linear
program in [16]. The limit of the optimization time is set to 24
hours. The results are plotted in Figure 7. Our work takes much
lesser time to find optimal routing solutions than the other
techniques for all topologies and all sizes. The work in [12]
scales well for FatClique and BCube but fails to obtain optimal
routing solutions within the time limit for SlimFly beyond
98 nodes. The linear program in [16] cannot scale beyond
112 nodes for all considered topologies due to insufficient
computing memory.

D. Scalability in terms of variables and constraints

Figure 8 shows the numbers of variables and constraints
at different sizes of FatClique from 8 to 1728 nodes, which
follows the same evaluation in [12]. Our scalable formulation
in (8) is much leaner than the other techniques regarding the
numbers of variables and constraints. While the linear program
in [16] can obtain an optimal routing solution in polynomial
time, its formulation size grows exponentially as the topology
size increases, resulting in the insufficient memory issue in
Section VI-C. Since the state-of-the-art technique in [12]
iteratively solves two linear programs, we only count the total
numbers of variables and constraints from the two programs
at the first iteration without additional constraints from later
iterations. Yet, its formulation size is still larger than ours.

E. Reduction of forwarding rules

The efficiency of the forwarding rule grouping in Algo-
rithm 4 is measured by the percentage of space saving, which
is the proportion of rule reduction to non-grouped rules.
Figure 9 shows the space saving at various sizes of FatClique,
SlimFly, and BCube. Our grouping method reduces more than

0 250 500 750 1000 1250 1500 1750
Number of nodes

103

106

109

1012

To
ta

l (
lo

g
sc

al
e)

Vars. in [16]
Consts. in [16]

Vars. in [12]
Consts. in [12]

Vars. in this work
Consts. in this work

Fig. 8. The numbers of variables and constraints at various sizes of FatClique.
For the largest FatClique, the numbers of variables and constraints in the
scalable formulation are 160 and 5326 respectively.

0 500 1000 1500 2000 2500
Number of nodes

0
20
40
60
80

100

Sp
ac

e
sa

vi
ng

 (%
)

Mean SlimFly
Mean FatClique
Mean BCube

Fig. 9. The space saving (percentage) at different sizes of FatClique, SlimFly,
and BCube. Each mean value is computed from all nodes in a topology. The
maximum and minimum values are represented by horizontal bars.

90% of the non-grouped forwarding rules under FatClique with
no less than 216 nodes and under BCube with no less than
112 nodes. The space saving for SlimFly highly depends on
topology configuration.

F. Possible application for BCube

BCube employs dynamic source routing to utilize multi-
path capacity. Each source selects the best-quality path from
its candidate paths, based on the current maximum avail-
able bandwidth. This approach constantly measures available
bandwidth, introduces complexity, and may need specialized
hardware and network stack. Instead, one could employ the
oblivious routing approach on BCube for simpler production.

Table I shows the results of our optimal routing solution
and equal split, which is equivalent to a uniform selection of
paths in BCube’s dynamic routing. The optimal solution gains
1.8×-6.7× congestion improvement over the equal split.

VII. CONCLUSION

This paper proposes the polynomial-time process for de-
signing optimal compact oblivious routing for datacenter net-
works. In the process, an optimal oblivious routing solution is
designed by solving a scalable linear program, derived from
the transformation of a robust optimization problem and the
exploitation of repeated network structures. After obtaining an
optimal routing solution, the process compacts the forwarding
rules, converted from the optimal solution, in order to reduce
memory requirement for real-world deployment.

Potential future work includes topology asymmetry, network
failure, and prior traffic distribution.

The authors have provided public access to their code at
https://github.com/NDS-VISTEC/DCN-Oblivious-Routing.

TABLE I
THE MAXIMUM CONGESTION RATIO IN BCUBE WITH OBLIVIOUS ROUTING

BCube Maximum congestion ratio
#Nodes This work Equal split Improvement

24 2.50 4.50 1.80x
112 4.00 11.49 2.87x
512 5.50 21.50 3.91x
2304 6.97 47.19 6.77x

REFERENCES

[1] A. Singla, P. B. Godfrey, and A. Kolla, “High throughput data
center topology design,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Arp. 2014, pp. 29–41. [Online]. Available: https://www.us
enix.org/conference/nsdi14/technical-sessions/presentation/singla

[2] M. Zhang, R. N. Mysore, S. Supittayapornpong, and R. Govindan,
“Understanding lifecycle management complexity of datacenter
topologies,” in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). Boston, MA: USENIX
Association, Feb. 2019, pp. 235–254. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/zhang

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 63–74, Aug. 2008. [Online]. Available:
https://doi.org/10.1145/1402946.1402967

[4] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and
A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized
control in google’s datacenter network,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, pp. 183–197, Aug. 2015. [Online]. Available:
https://doi.org/10.1145/2829988.2787508

[5] A. Andreyev. Introducing data center fabric, the next-generation
facebook data center network. [Online]. Available: https://engineering.
fb.com/2014/11/14/production-engineering/introducing-data-center-fab
ric-the-next-generation-facebook-data-center-network/

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable
and flexible data center network,” SIGCOMM Comput. Commun.
Rev., vol. 39, no. 4, pp. 51–62, Aug. 2009. [Online]. Available:
https://doi.org/10.1145/1594977.1592576

[7] A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander:
Towards optimal-performance datacenters,” in Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’16. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 205–219. [Online]. Available:
https://doi.org/10.1145/2999572.2999580

[8] V. Harsh, S. A. Jyothi, and P. B. Godfrey, “Spineless data centers,”
in Proceedings of the 19th ACM Workshop on Hot Topics in
Networks, ser. HotNets ’20. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 67–73. [Online]. Available:
https://doi.org/10.1145/3422604.3425945

[9] M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter net-
work topology,” in SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 348–359.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
S. Lu, and G. Lv, “Bcube: A high performance, server-centric network
architecture for modular data centers,” in ACM SIGCOMM. Association
for Computing Machinery, Inc., August 2009. [Online]. Available: https:
//www.microsoft.com/en-us/research/publication/bcube-a-high-perfor
mance-server-centric-network-architecture-for-modular-data-centers/

[11] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A scalable
and fault-tolerant network structure for data centers,” in SIGCOMM08.
Association for Computing Machinery, Inc., August 2008. [Online].
Available: https://www.microsoft.com/en-us/research/publication/dcell
-a-scalable-and-fault-tolerant-network-structure-for-data-centers/

[12] S. Supittayapornpong, P. Namyar, M. Zhang, M. Yu, and R. Govindan,
“Optimal oblivious routing for structured networks,” in IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, 2022, pp. 1988–
1997.

[13] D. Thaler and C. Hopps. Rfc2991: Multipath issues in unicast and
multicast next-hop selection. [Online]. Available: https://datatracker.ietf
.org/doc/html/rfc2991

[14] R. Zhang-Shen and N. McKeown, “Guaranteeing quality of service to
peering traffic,” in IEEE INFOCOM 2008 - The 27th Conference on
Computer Communications, 2008, pp. 1472–1480.

[15] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Traffic-oblivious
routing in the hose model,” IEEE/ACM Transactions on Networking,
vol. 19, no. 3, pp. 774–787, 2011.

[16] D. Applegate and E. Cohen, “Making intra-domain routing
robust to changing and uncertain traffic demands: Understanding
fundamental tradeoffs,” in Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 313–324. [Online].
Available: https://doi.org/10.1145/863955.863991

[17] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke, “Optimal
oblivious routing in polynomial time,” in Proceedings of the Thirty-Fifth
Annual ACM Symposium on Theory of Computing, ser. STOC ’03.
New York, NY, USA: Association for Computing Machinery, 2003, p.
383–388. [Online]. Available: https://doi.org/10.1145/780542.780599

[18] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford,
“Efficient traffic splitting on commodity switches,” in Proceedings
of the 11th ACM Conference on Emerging Networking Experiments
and Technologies, ser. CoNEXT ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2716281.2836091

[19] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“Hyperx: Topology, routing, and packaging of efficient large-scale
networks,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09. New York,
NY, USA: Association for Computing Machinery, 2009. [Online].
Available: https://doi.org/10.1145/1654059.1654101

[20] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 2008 International Symposium on
Computer Architecture, 2008, pp. 77–88.

[21] S. Supittayapornpong, B. Raghavan, and R. Govindan, “Towards highly
available clos-based wan routers,” in Proceedings of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
424–440. [Online]. Available: https://doi.org/10.1145/3341302.3342086

[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[23] N. Karmarkar, “A new polynomial-time algorithm for linear
programming,” in Proceedings of the Sixteenth Annual ACM Symposium
on Theory of Computing, ser. STOC ’84. New York, NY, USA:
Association for Computing Machinery, 1984, p. 302–311. [Online].
Available: https://doi.org/10.1145/800057.808695

[24] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs in the
current matrix multiplication time,” in Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, ser. STOC 2019.
New York, NY, USA: Association for Computing Machinery, 2019, p.
938–942. [Online]. Available: https://doi.org/10.1145/3313276.3316303

[25] C. Godsil and G. F. Royle, Algebraic Graph Theory, ser. Graduate Texts
in Mathematics. Springer, 2001, no. Book 207.

[26] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal
of Symbolic Computation, vol. 60, pp. 94–112, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0747717113001193

[27] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, p. 69–74, mar 2008. [Online]. Available:
https://doi.org/10.1145/1355734.1355746

[28] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh,
and A. Vahdat, “Wcmp: Weighted cost multipathing for improved
fairness in data centers,” in Proceedings of the Ninth European
Conference on Computer Systems, ser. EuroSys ’14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2592798.2592803

[29] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[30] B. Towles and W. Dally, “Worst-case traffic for oblivious routing
functions,” IEEE Computer Architecture Letters, vol. 1, no. 1, pp. 4–
4, 2002.

