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Designing Optimal Compact Oblivious Routing for
Datacenter Networks in Polynomial Time

Abstract

Kanatip Chitavisutthivong

Recent datacenter network topologies are shifting towards heterogeneous and

structured topologies for high throughput, low cost, and simple manageability. However,

they rely on sub-optimal routing approaches that fail to achieve their designed capacity.

This thesis proposes a process for designing optimal oblivious routing that is programmed

compactly on programmable switches. The process consists of three steps in tandem.

We first transform a robust optimization problem for designing oblivious routing into

a linear program, which is solvable in polynomial time but cannot scale for datacenter

topologies. We then prove that the repeated structures in a datacenter topology lead to a

structured optimal solution. We use this insight to formulate a scalable linear program,

so an optimal oblivious routing solution is obtained in polynomial time for large-scale

topologies. For real-world deployment, the optimal solution is converted into forwarding

rules for programmable switches with stringent memory. With this constraint, we utilize

the repeated structures in the optimal solution to group the forwarding rules, resulting

in compact forwarding rules with a much smaller memory requirement. Furthermore,

one may possess knowledge of the range of traffic demands within a datacenter network,

which can be obtained from historical data or through capacity planning. Hence, we

also extend the design process to accommodate such scenarios. Extensive evaluations

show our process i) obtains optimal solutions faster and more scalable than a state-of-

the-art technique and ii) reduces the memory requirement by no less than 90% for most
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considered topologies.

Keyword: Oblivious routing, compact routing, datacenter networks,

graph automorphism
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Chapter 1

Introduction

1.1 Trend of Designing Datacenter Network Topologies
Nowadays, many private companies have established their own datacenters to

operate a range of services with various requirements and applications, such as social

networks, search engines, video-on-demand, cloud computing, machine learning, and

more. With the rapid expansion of datacenter networks to meet the growing demands of

the AI and cloud computing era, the trend of designing network topologies is currently

shifting towards heterogeneous, structured topologies for high capacity, low cost, and

ease of management [1, 2, 3, 4]. This attempts to replace the conventional folded-Clos

family, including FatTree [5], Google’s Jupiter [6], Facebook’s Fabric [7], and Microsoft’s

VL2 [8]. Therefore, alternative topologies have been proposed, such as Xpander [3],

FatClique [2], DRing [9], SlimFly [10], and other server-centric networks where servers

have routing capability, such as BCube [11].

Suppose a high-capacity datacenter network, datacenter administrators expect

that its network resources will be utilized efficiently. This relies heavily on traffic routing

in achieve this efficiency [12].

1.2 Routing in Datacenter Networks
Given a network topology and a flow of traffic demand from a source server to

a destination server, the routing algorithm is used to determine paths from the source

to the destination and allocate the fractions of traffic demand over these paths1. In

practice, however, the routing of traffic demands for each source and destination occurs

simultaneously within the network, where links have limited capacity and are shared

among the flows. This can lead to issues such as network congestion, which could

1To alleviate the congestion and enhance fault tolerance, network administrators often employ multi-path

routing, which routes traffic along multiple alternative paths rather than a single path.



degrade network performance (e.g., reduced network throughput). Particularly, when the

traffic load on certain links is heavy while others are underutilized2.

Routing traffic inside datacenter networks can be categorized into two categories:

dynamic routing and oblivious routing. Dynamic routing regularly adjusts routes and

fractions of traffic demands over routes based on network states, such as queue occupancy

and traffic demand, to ensure that the network resources will be utilized efficiently

[10, 11, 13, 14]. In fact, the network state (e.g., traffic demand) in datacenter networks

are highly dynamic and difficult-to-predict in nature [8, 15, 16]. Thus, dynamic routing

must react immediately to these changes. However, this come at the cost of complex

network routing system and may require special hardware. On the other hand, oblivious

routing is much simpler. For oblivious routing, traffic demands are routed according to

pre-determined routes and fractions of the demands over each route, which are designed to

be robust to changing traffic demands [17, 18, 19, 20, 20, 21, 22]. In particular, the routing

is oblivious to the current traffic demand. Therefore, neither frequent re-configuration nor

dynamic routing is required when traffic demand changes. However, this obliviousness

may lead to increased network congestion compared to dynamic routing operating under

the same network state. Despite this potential drawback, oblivious routing remains widely

used in production networks due to its robustness and simplicity [6, 7, 8]. As illustrated in

Figure 1.1, for example, the folded-Clos family [5, 6, 7, 8] often employs the Equal-Cost

Multi Paths (ECMP) routing approach [17] that distributes traffic demand evenly among

all equal-cost paths, regardless of traffic demand. Another oblivious routing approach is

Valiant Load Balancing (VLB) [18, 19, 20], also known as two-stage routing, because

the routing is performed in two stages, i.e., a traffic is equally split to intermediate nodes,

before being forwarded to its final destination.

2The network congestion can be considered in two different types: link-level congestion and node-level

congestion. To simplify the model, in this thesis, our focus is solely on link-level congestion.
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Figure 1.1 The widely used oblivious routing approaches. (Left) ECMP is employed on FatTree

topology. (Right) VLB is employed on clique topology.

1.3 Research Motivation
Due to the advantages of oblivious routing, the design of optimal oblivious

routing that minimizes network congestion has been studied for decades [20, 21, 22].

Hereafter, network congestion (or maximum congestion ratio) refers to the congestion

ratio of the most congested link. Formally, this is defined as the maximum value of the

congestion ratio among all links in the network. The congestion ratio of a link is the

proportion of total traffic load on the link to its capacity.

While, the widely used ECMP and VLB approaches have been proven to be

optimal oblivious routing methods for specific network topologies—ECMP for the folded-

Clos networks [23] and VLB for clique networks [19]—they are sub-optimal for the

alternative topologies such as Xpander, FatClique, DRing, SlimFly, and BCube, due to

topological differences. This motivates us to pose a research problem: how to design

optimal oblivious routing for general datacenter networks, including those alternative

topologies to the folded-Clos family.

Generally, designing an optimal oblivious routing for an arbitrary network

topology is equivalent to solving a robust multi-commodity flow problem3 [20, 21, 22].

The works in [20, 21] views this problem as a game4 and derived a linear program for

3The robust multi-commodity flow problem is a variation of the multi-commodity flow problem that

optimize under a broad set of possible traffic demands.
4The problem is viewed as a two-player zero-sum game: Player 1 seeks routing that minimizes network

congestion given Player 2’s traffic demand, while Player 2 aims to generate the traffic demand that

maximizes network congestion given Player 1’s routing strategy.
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intra-domain networks. However, the networks they studied, are considered small-scale

compared to datacenter networks which typically have more than a thousand nodes and

tens of thousands of links. As the size of datacenter networks is rapidly expanding to

accommodate the increasing demands in the AI and cloud computing era, the recent work

[22] exploited the repeated network structures commonly found in structured topologies,

which are typically used in existing datacenter networks [2, 3, 5, 6, 7, 8, 9, 10, 11]. This

approach aims to reduce the complexity of the robust multi-commodity flow problem.

Therefore, an optimal oblivious routing solution is obtained for larger network sizes.

In summary, the works [20, 21] can obtain the optimal routing solution in

polynomial time5 (in the size of input instance, which is extremely large for large-scale

networks). However, the second work [22] can scale to larger networks but could take

non-polynomial time due to the complexity of robust optimization6. This leads to a

research question:

Research question 1: Could we design optimal oblivious routing in polynomial

time that also scales for large datacenter networks to achieve the best of both

worlds?

The memory constraint is another important issue for the real-world deploy-

ment of oblivious routing. After an optimal routing solution is obtained, it is converted

to forwarding rules that determine how traffic is split at each switch in a network.

The forwarding rules could be configured into programmable switches with traffic-

splitting capability7 by using these splitting techniques [27, 28, 29, 30]. Table 1.1

illustrates an example of a forwarding rules table at switch i which converted from a

routing solution. The limited size of memory allocated for the forwarding rules in a

switch becomes a concern, when dealing with a large number of forwarding rules, es-

pecially during the deployment of optimal routing for large-scale datacenter networks

with thousands of commodities (source-destination pairs). Several techniques to reduce

5Since there exists a polynomial-time algorithm for solving linear programming problems [24, 25, 26].
6They solve the robust multi-commodity flow problem by introducing an iterative algorithm that alternately

solves two linear programs. (For further details, please see Chapter 3.1.2.)
7The switches that enable operators to control packet forwarding behavior, include commodity switches

(e.g., OpenFlow switches) and P4 data plane programmable switches.
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Table 1.1 An example of a forwarding rules table at switch i, which has three links connecting to

switches j, k, and l, respectively. There are two commodities (source-destination pairs)

whose traffic are traversed via switch i.

Commodity Next-hop Split ratio

(u,v) j 1/3

k 2/3

(a,b) j 1/4

k 1/4

l 1/2

Figure 1.2 The design process of optimal compact oblivious routing.

memory requirements have been studied [27, 28, 31, 32]. For instance, the approximation

approaches [27, 28] trade off between optimality and available memory by approximating

the routing solution and then truncating it to fewer rules. While techniques in [31, 32]

are customized specifically for designing oblivious routing that based on Räcke’s hierar-

chical decomposition tree [33]. Nevertheless, the works that focus on designing optimal

oblivious routing by solving optimization problems [20, 21, 22] did not emphasize the

reduction of memory requirement. This leads to another research question:

Research question 2: Could we reduce the memory requirement given an

optimal oblivious routing solution?
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In this thesis, we propose a process for designing optimal compact oblivious

routing for datacenter networks to address the two research questions above, as shown

in Figure 1.2. We first formulate an oblivious routing problem as robust optimization

for general datacenter networks, including those alternative topologies to the folded-

Clos family. We then transform the robust optimization into a linear program using

decomposition and duality techniques. This transformation reduces the complexity of

optimal oblivious routing design to just solving a polynomial-time solvable linear program.

However, the linear program becomes tractable for small-scale datacenter networks, due

to its problem size—in terms of the number of variables and constraints—becoming

excessively large in the context of large-scale datacenter networks.

Since datacenter networks usually have repeated structures, we show the ex-

istence of an automorphism-invariant optimal solution, whose variables have repeated

values. From this insight, we formulate a scalable linear program—a linear program with

a significantly reduced problem size, allowing it to scale to larger network sizes. As a

result, we can design optimal oblivious routing for large-scale datacenter networks with

polynomial-time complexity, which addresses the first research question. For the second

research question, we exploit the structure of the optimal oblivious routing solution,

obtained from the scalable linear program, to group the forwarding rules. This grouping

compacts the forwarding rules and significantly reduces memory requirement, which

addresses the second research question. In addition, some datacenter administrators

might have insights into traffic demand ranges within a datacenter network, such as the

range of traffic demand between a source-destination pair. Therefore, we extend the

design process to accommodate such situations.

Extensive evaluations of the scalable linear program on various datacenter

network topologies and sizes show that the linear program is faster and more scalable than

the state-of-the-art technique in [22] and another linear formulation in [21]. Moreover, the

forwarding rules grouping significantly reduces forwarding rules’ memory requirement

by no less than 90% for the majority of considered topologies. We also provide possible

applications of the optimal compact oblivious routing.
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1.4 Organizations of the Thesis
This thesis is organized as follows:

Chapter 1 introduces the trend of designing datacenter network topologies and

background of routing in datacenter networks, as well as the research challenges and

motivations.

Chapter 2 presents research objectives, research scopes, and contributions of the

thesis.

Chapter 3 provides the literature review on the brief history of the development of

oblivious routing studies, which focus on the objective of minimizing network congestion,

and related works about reduction of forwarding rules.

Chapter 4 describes the model of datacenter networks and the oblivious routing

problem. It discusses the transformation of the problem into a linear program and the

exploitation of the repeated network structures to improve scalability. Additionally, the

chapter introduces the modification to support customized traffic models, and presents a

grouping technique to compact forwarding rules for real-world deployment.

Chapter 5 presents extensive evaluations of our scalable linear program on

various datacenter network topologies and sizes. Its scalability is evaluated in terms of

computation times and problem sizes. Additionally, the chapter provides an evaluation of

the efficiency of our forwarding rules grouping method, and demonstrates how our work

is applicable to an existing server-centric topology, as well as how it incorporates traffic

demand knowledge.

Chapter 6 concludes the thesis and outlines potential directions for future re-

search.
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Chapter 2

Objectives, Scopes, and Contributions

2.1 Research Objectives
This thesis aims to develop a polynomial-time process for designing optimal

compact oblivious routing for datacenter networks. The main objectives can be summa-

rized as follows:

Objective 1 (Optimal Oblivious Routing): To develop a polynomial-time and scalable

approach to design optimal oblivious routing for datacenter networks.

Objective 2 (Compact Routing): To design a technique for reducing the memory re-

quirement given an optimal oblivious routing solution in real-world deployment.

2.2 Scopes of Research
The scope of this thesis is summarized as follows:

1) We focus on designing optimal compact oblivious routing for datacenter net-

works that minimizes network congestion, specifically at the link level, where

links in the network have limited capacity. However, network congestion also

be considered at the node level or as a combination of both. To simplify the

problem, we only focus on link-level congestion, assuming that all network

nodes, such as switches or servers, have an unlimited buffer size and can process

and forward traffic without internal delays.

2) We focus on the hose traffic variation model [34] as an underlying assumption for

all possible traffic demands within a datacenter network, similar to [20, 22]. This

traffic model assumes that the knowledge of the maximum traffic entering and

leaving the network at each network node is available. Such knowledge could

be inferred using the physical limitations of the devices, such as the provided



bandwidth in Network Interface Cards (NICs) or switch chips. However, this

assumption might be overly pessimistic, as the normal traffic demand entering

and leaving the network through any node often falls within a certain range

rather than consistently reaching maximum rates. In practice, some datacenter

administrators may possess the knowledge of the traffic demand ranges [21, 35]

(i.e., the traffic demand between a source-destination pair is restricted to a given

demand range). Therefore, we also focus on the customized hose model which is

a hose model that incorporates knowledge of traffic demand ranges (For formal

definition, please see Section 4.4).

3) We assume that traffic can be split arbitrarily at any intermediate routing-capable

network node (i.e., switch or routing-capable server), as proposed in [19, 36].

The traffic for each commodity is considered as an aggregation of flows1 with

the same commodity2.

4) The practical implementation technique of traffic splitting, according to forward-

ing rules, on switches is not a focus of this thesis. However, the forwarding

rules could be configured into programmable switches with traffic-splitting

capability3 by using these splitting techniques [27, 28, 29, 30].

5) We use the mathematical programming solver— i.e, Gurobi [37]— to solve all

linear programs in the experiments.

6) The issue of exiting closed loops (i.e., directed cycles) in the routing solution

is not a focus of this thesis. However, these loops could be removed during

post-processing4.

1Any packets are part of the same flow when their IP packet header fields are identical — a flow is

typically defined by 5-tuple (source IP address, destination IP address, source port number, destination

port number, transport protocol (e.g., TCP or UDP)).
2In practical deployment, a commodity could be defined by a pair of source node addresses and destination

node addresses. For instance, the address for a Top-of-Rack switch might be assigned using the IP

prefix of the servers connected to it.
3The switches that enable operators to control packet forwarding behavior, include commodity switches

(e.g., OpenFlow switches) and P4 data plane programmable switches.
4For further details, please see Section 3.5 "Flow Decomposition Algorithms" in [38]

10



7) The issue of out-of-order packet delivery induced by multi-path routing is not a

focus of this thesis. Nevertheless, this could be avoided by ensuring that packets

belonging to the same TCP or UDP flow are routed along the same path.

2.3 Contributions
In this thesis, we propose a process for designing optimal compact oblivious

routing for datacenter networks in polynomial time. The process consists of three steps,

which are summarized as follows:

Achievement of Objective 1 (Optimal Oblivious Routing):

1) We transform a robust optimization problem for designing oblivious routing

into a linear program. By solving this linear program, which is done in

polynomial time, we obtain an optimal oblivious routing solution. However,

this linear program is tractable for small-scale datacenter network topologies.

(see Section 4.2)

2) We prove that a datacenter network topology with repeated structures has an

optimal solution whose variables also have repetition. We use this insight to

formulate a scalable linear program that is solvable in polynomial time and is

tractable for larger datacenter network topologies. (see Section 4.3)

Achievement of Objective 2 (Compact Routing):

3) We utilize the structure of the optimal solution of the scalable linear program,

to compact forwarding rules and reduce memory requirement for real-world

deployment. (see Section 4.5)

Additionally, some datacenter administrators might have insights into traffic

demands within a datacenter network, specifically, the range of traffic demand for each

source-destination pair. These insights could come from historical measurements or

capacity planning. We also extend the design process to accommodate such situations.

(see Section 4.4)
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Chapter 3

Literature Reviews

In this chapter, we provide a brief history of the development of oblivious routing

studies which emphasizes on the objective of minimizing network congestion. Addi-

tionally, we review the compilation of works that related to the reduction of forwarding

rules.

3.1 Oblivious Routing
Oblivious routing has long been studied in two perspectives: algorithmic

construction with performance bounds [18, 33, 39, 40] and designing optimal obliv-

ious routing via mathematical optimization [20, 21, 22, 41].

3.1.1 Algorithmic Construction with Performance Bounds

The performance of a routing algorithm is measured by the competitive

ratio, defined as the maximum ratio of the network congestion resulting from an oblivious

routing algorithm to the minimum possible network congestion across all traffic demands.

In the 1980s, Valiant et al. [18, 39] proposed an O(logn)-competitive

ratio oblivious routing algorithm for hypercube topology where n is the number of

nodes in a network. The key idea of Valiant’s routing scheme is that the traffic from

a source is equally split to intermediate nodes, and every intermediate node routes the

traffic to its destination. Alternatively, an oblivious routing scheme can be efficiently

constructed from decomposition tree(s) via the hierarchical decomposition technique.

In 2002, Räcke [33] proposed an oblivious routing scheme for undirected graphs with

competitive ratio O(log3 n) by using a single decomposition tree. Later in 2008, Räcke

[40] utilized the convex combination of decomposition trees [42] to obtain an O(logn)-

competitive ratio routing scheme.

Nevertheless, the aforementioned methods emphasize the performance



bound in terms of competitive ratio rather than achieving optimal oblivious routing.

3.1.2 Designing Optimal Oblivious Routing via Mathematical

Optimization

The studies on designing optimal oblivious routing via mathematical

optimization can be categorized into two groups: optimal oblivious routing with polyno-

mial time construction [20, 21, 41] and scalable design technique for optimal oblivious

routing [22].

3.1.2.1 Optimal Oblivious Routing with Polynomial Time

Construction

The framework for designing optimal oblivious routing in

polynomial time typically unfolds in the following manner: Initially, obtaining optimal

oblivious routing requires transforming the robust multi-commodity flow problem into

a linear program [20, 21, 41]. Subsequently, this linear program can be solved in

polynomial time (in the size of the problem instance, which is the network size) using

these algorithms [24, 25, 26].

In 2003, Azar et al. [41] proposed the first polynomial-time

approach for designing optimal oblivious routing. Initially, they formulated the optimal

oblivious routing problem as a robust multi-commodity flow problem for an arbitrary

network. Then, they transformed the robust multi-commodity flow problem into a main

linear program with the objective of minimizing network congestion across all possible

traffic matrices1 within a network. They defined a traffic set as a set of all possible

traffic matrices that can be routed (using any routing) with network congestion at most 1.

However, due to the infinite (continuous) number of possible traffic matrices in the traffic

set, they addressed this challenge by formulating a separation oracle linear program.

This linear program is utilized to test the feasibility of the candidate routing solution

for each link. In other words, given a candidate routing solution and a considered link,

the separation oracle linear program aims to maximize the link’s congestion ratio by

1A traffic matrix is formed by the traffic demands from every source-destination pair.
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generating the worst-case traffic matrix that maximizes congestion ratio of the link. The

candidate routing is feasible if every link’s congestion ratio is less than the objective value

specified in the main linear program. To ensure the construction of optimal oblivious

routing in a polynomial time, they input the main linear program and the separation oracle

into an iterative algorithm for solving the linear optimization problem—the Ellipsoid

method [24]. This method is employed to find an optimal routing solution. However, in

practice, the Ellipsoid method is known for its relatively slow and inefficient performance.

Motivated by the need for an optimal oblivious routing scheme

for intra-domain networks, Applegate et al. [21] improved prior work by introducing

an efficient polynomial-time technique for designing optimal oblivious routing for intra-

domain networks. They formulated an efficient single linear program by combining the

dual formulation of the separate oracle with the main linear program. The proposed linear

program can be solved using a more efficient and practical optimization method called

the Interior-point method [25]. However, the works [21, 41] made a broad assumption

about possible traffic matrices within a network, those that can be routed with maximum

congestion ratio at most 1. Later, Kodialam et al. [20] investigated the optimal oblivious

routing problem for intra-domain networks, emphasizing a different assumption about

possible traffic matrices. They employed the hose traffic variation model [34] which

assumes that the knowledge of the maximum traffic entering and leaving the network at

each network node is available. They adapted the previous work [21] to accommodate

this traffic model. However, the intra-domain networks they studied2, are smaller in term

of scale compared to datacenter networks.

2Both are evaluated on coalesced versions of Rocketfuel topologies [43], specifically geographical PoP-

to-PoP ISP networks, where nodes correspond to cities. These topologies have a maximum topology

size of approximately 60 nodes and 90 links.
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3.1.2.2 Scalable Technique for Designing Optimal Oblivious

Routing

As datacenter network sizes are expanding rapidly to accom-

modate the increasing demand in the the era of AI and cloud computing, recent work

proposed by Supittayapornpong et al. [22] in 2022 leveraged the repeated network struc-

tures, which typically exist in datacenter networks, to reduce the complexity of robust

multi-commodity flow problem. This makes it tractable to obtain an optimal oblivious

routing solution for larger network sizes. They utilized the hose traffic variation model as

a traffic model and introduced an iterative algorithm that alternately solves two linear

programs to solve the robust multi-commodity flow problem. To tackle the issue of

considering an infinite number of possible traffic matrices in the traffic model, they first

transformed the robust optimization problem into a linear program, which considers an

initial traffic set with limited number of traffic matrices. They obtained a sub-optimal

routing solution by solving this linear program. Subsequently, they generated additional

traffic matrices by solving another linear program, using the obtained routing solution as

a guide to improve the next routing solution. These generated traffic matrices were then

added to the limited traffic set for solving the robust optimization problem again. This

process continues until no infeasible traffic matrices were found3. While off-the-shelf

solvers can efficiently solve a linear program in polynomial time, the challenge arises

from the iterative nature of this method, where two linear programs are alternately solved.

This is problematic because we have no notion when the algorithm would end.

All of the aforementioned methods either provide a polynomial-

time construction bound but are intractable for large-scale topologies [20, 21, 41], or they

are scalable for large networks but could take non-polynomial time construction due to

the complexity of robust optimization [22]. This leads to a research question.

Research question 1: Could we design optimal oblivious routing in polynomial

time that also scales for large datacenter networks to achieve the best of both

worlds?

3An infeasible traffic matrix is a traffic matrix that that violates the capacity of certain links.
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3.2 Compact Oblivious Routing
Recent studies on technique to reduce the memory requirements can be catego-

rized into two groups: 1) Trading-off split accuracy with memory requirements—allowing

the rules to fit available memory, by approximating the routing solution and then truncat-

ing it to fewer rules [27, 28]. 2) Designing compact oblivious routing scheme, which is

routing scheme that requires small number of forwarding rules [31, 32].

Most recent works about designing oblivious routing scheme that requires small

memory have concentrated on designing algorithm for constructing compact oblivious

routing with performance bounds [31, 32]. The performance of the algorithm is measured

by the competitive ratio. In 2019, Räcke et al. [31] argued that the existing oblivious

routing algorithm [33] requires large forwarding rules (i.e., polynomial in the network

size). Therefore, they introduced the first compact oblivious routing algorithm that

minimize congestion with a poly-logarithmic competitive ratio and provides a poly-

logarithmic upper bound on size of forwarding rules (in the network size). Their algorithm

is based on a hierarchical decomposition tree, as presented in [33], however, they also

proposed the technique to reduce the size of forwarding rules. One important drawback

of this work is that it only applies to undirected graphs with uniform capacity. Later in

2020, Czerner et al. [32] enhanced Räcke’s result [31] by extending it to accommodate

arbitrary undirected graphs.

These techniques to reduce the number of forwarding rules [31, 32] are cus-

tomized specifically for use with oblivious routing design that based on Räcke’s hier-

archical decomposition tree [33]. However, the works that focus on designing optimal

oblivious routing by solving optimization problems [20, 21, 22, 41] did not emphasize

the reduction of forwarding rules. Meanwhile, the approximation approaches [27, 28]

trade-off between optimality and available memory4. This leads to another research

question:

Research question 2: Could we reduce the memory requirement given an

optimal oblivious routing solution?

4It is worth mentioning that the approximation approaches could be employed in situations where the

reduced rules still exceed the available memory of a switch.
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Chapter 4

Methodology

In this chapter, we describe the model of datacenter networks and the oblivious

routing problem (Section 4.1). Then, we discuss the transformation of the problem into

a linear program (Section 4.2), and the exploitation of the repeated network structures

to improve scalability (Section 4.3). We also describe the modification to support

customized traffic models (Section 4.4), and provide a grouping technique to compact

forwarding rules for real-world deployment (Section 4.5).

4.1 System Model
In this section, we formally model datacenter networks, traffic demands, and

routing components before formulating an oblivious routing optimization problem. These

models are general and should fit most practical datacenter networks.

4.1.1 Datacenter Network Model

Datacenter network architecture can be divided into the traditional

server-switch architecture [1, 2, 3, 9, 10, 44, 45] and the server-centric architecture

[11, 46]. The differences between these architectures are that every server in the former

has only one direct connection to a switch and has no routing capability, while every

server in the latter has the routing capability and may have multiple direct connections to

other servers or switches. Our network model capture both the traditional server-switch

architecture and the server-centric architecture.

A datacenter network is an interconnection of network devices (e.g.,

servers or ethernet switches). Each device has a finite number of full-duplex ports for

interconnection with other devices. For example, Broadcom’s Tomahawk 4 Ethernet

switch chip can be configured as 256 ports at 100Gbps [47] or a server which installs

one Broadcom’s P2100G Ethernet NIC with 2 ports at 100Gbps [48]. Two devices are



Table 4.1 List of key notations

Symbols Description

Sets

S Set of routing-capable nodes

P Set of routing-incapable nodes

N Set of all nodes, where N = S ∪P

L Set of all links, where node i and node j are connected by link (i, j) ∈ L with link capacity Ci j

H Set of nodes that have positive capacities, where H= {n ∈N : Hn > 0}

C Set of all commodities, where C =
{
(u,v) ∈H2 : u ̸= v

}
T Set of all possible traffic matrices

Parameters

Ci j The capacity of link (i, j)

Hn The capacity of node n

tuv
min The minimum traffic demand of commodity (u,v)

tuv
max The maximum traffic demand of commodity (u,v)

Decision Variables

f uv
i j The share of commodity (u,v) over link (i, j)

β u
i j The dual variable correspond to the node capacity constraint in (4.2.2) of node u over link (i, j)

γu
i j The dual variable correspond to the node capacity constraint in (4.2.2) of node u over link (i, j)

λ uv
i j The dual variable correspond to the range constraint in (4.4.1) of commodity (u,v) over link (i, j)

µuv
i j The dual variable correspond to the range constraint in (4.4.1) of commodity (u,v) over link (i, j)

physically connected by connecting ports from both ends. In practice, there could be

multiple physical links between two devices to increase communication capacity. Our

model considers a logical link between any two devices, and the logical capacity equals

the aggregated capacity of all physical links between the devices.

In our model, a network device can be viewed as a node. To deal

with the difference between two datacenter network architectures, we model a datacenter

network by a graph with two types of nodes: routing-capable nodes and routing-incapable

nodes. Let S and P be the sets of routing-capable nodes and routing-incapable nodes

respectively. The set of all nodes is denoted by N = S ∪P . Formally, a datacenter

network is a directed graph with the set of all nodes N and the set of logical links L,

as shown in Figure 4.1. Every logical link connects two nodes. A directed link (i, j)

connects node i to node j with capacity Ci j. Because of the full-duplex ports, link

(i, j) ∈ L if and only if ( j, i) ∈ L, and both links have identical capacity, i.e., Ci j =C ji

for every (i, j) ∈ L.
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Figure 4.1 A simple network consists of routing-capable nodes, routing-incapable nodes, and

links. These nodes and links could have different capacities.

4.1.2 Traffic Model

Traffic inside a datacenter network is a combination of demands gener-

ated by servers. In our datacenter network model, each network device (e.g., switch or

server) is represented as a node. Each node n has a node capacity, denoted as Hn. Particu-

larly, Hn represents the maximum amount of traffic that can enter and leave the network

through that node. The value of Hn could be inferred using the provided bandwidth in

Network Interface Cards (NICs) or switch chips. We denote the set of nodes that have

positive capacities byH= {n ∈N : Hn > 0}.

A commodity (u,v) is a pair of source node u and destination node

v where both nodes have positive capacity. We denote the set of all commodities by

C =
{
(u,v) ∈H2 : u ̸= v

}
. Node u sends traffic to node v and creates a traffic demand for

commodity (u,v). This traffic demand is denoted by tuv. The traffic demands from every

commodity form a traffic matrix [tuv] ∈ R|C|+ , where R+ is a set of non-negative reals.

Since traffic demands inside a datacenter network could be highly

dynamic and difficult-to-predict in nature [8, 15, 16], we consider the set of all possible

traffic matrices, which is also called the hose traffic model [20, 22, 49]:

T =


∑v∈H−u tuv ≤ Hu ,∀u ∈H

∑u∈H−v tuv ≤ Hv ,∀v ∈H

tuv ∈ R+ ,∀(u,v) ∈ C

 , (4.1.1)

where A−x contains all members of A but excludes x, i.e., A−x = A\{x}. The first

constraint in (4.1.1) limits the amount of traffic generated from each node by the node’s

capacity. Similarly, the second constraint bounds the amount of traffic each node can

receive by the node’s capacity.
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4.1.3 Routing Model

We adopt the multi-commodity flow model with the commodity set

C. For every commodity (u,v) ∈ C, the share of commodity’s demand over link (i, j)

is denoted by f uv
i j for every link (i, j) ∈ L. Notice that, given a traffic demand tuv, the

amount of the demand over link (i, j) is tuv f uv
i j . These shares over all links in the network,{

f uv
i j : (i, j) ∈ L

}
, form the shares of commodity (u,v). We denote the shares of all

commodities by [ f uv
i j ], where [ f uv

i j ] ∈ R|C|×|L|+ .

Recall that there are two node types. A routing-capable node can route

every traffic independent of the traffic’s commodity. A routing-incapable node can only

route traffic corresponding to the commodities involving the node, i.e., the node is either

a source or a destination of the traffic. Define I [x] as an indicator function that returns 1

if the statement x is true; otherwise 0. We define the set of all possible shares as follows:

F =



∑
j∈O(i)

f uv
i j − ∑

j∈I(i)
f uv

ji = I [i = u]− I [i = v]

,∀(u,v) ∈ C,∀i ∈N

f uv
i j = 0 ,∀(u,v) ∈ C,∀(i, j) ∈N ×P−v

f uv
iu = f uv

vi = 0,∀(u,v) ∈ C,∀i ∈N

f uv
i j ∈ R+ ,∀(u,v) ∈ C,∀(i, j) ∈ L


, (4.1.2)

where O(i) and I(i) are respectively the set of nodes corresponding to the outgoing links

from node i and the set of nodes corresponding to the incoming links to node i. The

first constraint is the share conservation where the total share at every source and every

destination is one. The second constraint enforces that every routing-incapable node is

not involved in the routes of other commodities unrelated to the node. The third constraint

ensures that both the source and destination are the endpoints of their corresponding

traffic.

4.1.4 Oblivious Routing Formulation

Given shares [ f uv
i j ] and a traffic matrix [tuv], we define the congestion

ratio of link (x,y) by the proportion of total traffic demand on the link to the link’s

capacity [21, 41]:

∑
(u,v)∈C

tuv f uv
xy

Cxy
.
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An oblivious routing problem aims to design the shares [ f uv
i j ] that

minimizes this congestion ratio across every link in the network and under all possible

traffic demands1. We formulate this oblivious routing problem as follows2. :

min
[ f uv

i j ]∈F
max

(x,y)∈L,
[tuv]∈T

∑
(u,v)∈C

tuv f uv
xy

Cxy
. (4.1.3)

This formulation has two challenges: (1) the robust objective with

infinite possibilities of traffic demands and (2) the scalability of the formulation for large

networks. The first challenge stems from the fact that the congestion ratio is a function

of every traffic demand in the traffic set T , so the entire set must be considered. The

second challenge is due to the sizes of datacenter networks, resulting in large numbers

of decision variables and constraints in the formulation. We tackle the two challenges

successively in Section 4.2 and Section 4.3.

4.2 Linear Program Formulation
This section tackles the challenge of the robust objective by transforming the

robust formulation in (4.1.3) to a simpler linear program, so an optimal oblivious routing

solution can be designed for appropriate network sizes3. This transformation is inspired

by [21], which considers a different network model and assumes possible traffic matrices

in the traffic set differently and uses different proof techniques.

We first observe that each link has its worst-cast traffic matrix, yielding its

maximal congestion ratio. Therefore, we introduce traffic matrix [tuv
xy ] ∈ T for every link

(x,y) to decouple the inner maximization in (4.1.3) as follows:

max
(x,y)∈L,
[tuv]∈T

∑
(u,v)∈C

tuv f uv
xy

Cxy
= max

(x,y)∈L
max
[tuv

xy ]∈T
∑

(u,v)∈C

tuv
xy f uv

xy

Cxy
(4.2.1)

1This is equivalent to the performance ratio in [21, 41] when the minimum possible maximum link

utilization is ignored.
2While the formulation may introduce cycles in a routing solution, those cycles can be easily removed in

post-processing (For further details, please see Section 3.5 "Flow Decomposition Algorithms" in [38])
3While, inappropriate network sizes refer to those that cause the problem size of the linear program—in

terms of the number of variables and constraints—to exceed the computation resources (e.g., the time

for solving or the memory of optimization solvers), making the task of obtaining the optimal oblivious

routing solution intractable.
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The above decomposition allows us to consider the sub-problem,

max[tuv
xy ]∈T ∑(u,v)∈C

tuv
xy f uv

xy
Cxy

, which finds the worst-case congestion ratio of link (x,y), in

isolation. Given a considered link (x,y) and a share solution [ f uv
i j ], this sub-problem is

rewritten as the following formulation:

Maximize ∑
(u,v)∈C

tuv
xy f uv

xy

Cxy

Subject to ∑
v∈H−u

tuv
xy ≤ Hu ,∀u ∈H

∑
u∈H−v

tuv
xy ≤ Hv ,∀v ∈H

tuv
xy ∈ R+ ,∀(u,v) ∈ C.

(4.2.2)

Instead of solving this sub-problem directly, we consider its dual problem with

dual variables [β u
xy]u∈H and [γu

xy]u∈H:

Minimize ∑
u∈H

Hu
(
β

u
xy + γ

u
xy
)

Subject to
f uv
xy

Cxy
−β

u
xy− γ

v
xy ≤ 0 ,∀(u,v) ∈ C

β
u
xy ∈ R+, γ

u
xy ∈ R+ ,∀u ∈H.

(4.2.3)

Lemma 1. For a given link (x,y) and a share solution [ f uv
i j ], the formulation in (4.2.3) is

the dual of the problem in (4.2.2).

Proof. Fix a link (x,y) and a share solution [ f uv
i j ]. We derive a dual problem by the duality

technique [50]. Define non-negative dual variables
[
β u

xy
]

u∈H ,
[
γu

xy
]

u∈H respectively for

the first two inequality constraints of the sub-problem in (4.2.2). We define the Lagrangian

associated with this problem as

L
([

tuv
xy
]
,
[
β

u
xy
]
,
[
γ

v
xy
])

= ∑
(u,v)∈C

tuv
xy f uv

xy

Cxy

− ∑
u∈H

β
u
xy

(
∑

v∈H−u

tuv
xy −Hu

)
− ∑

v∈H
γ

v
xy

(
∑

u∈H−v

tuv
xy −Hv

)

= ∑
(u,v)∈C

tuv
xy

(
f uv
xy

Cxy
−β

u
xy− γ

v
xy

)
+ ∑

u∈H
Hu
(
β

u
xy + γ

u
xy
)
.
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The dual function is defined as

D
([

β
u
xy
]
,
[
γ

v
xy
])

= max
[tuv

xy ]∈R
|C|
+

L
([

tuv
xy
]
,
[
β

u
xy
]
,
[
γ

v
xy
])
.

Note that this dual function is undefined, D
([

β u
xy
]
,
[
γv

xy
])
→ ∞ when

f uv
xy

Cxy
−

β u
xy− γv

xy > 0 for some commodity (u,v) ∈ C. We only consider the well-defined dual

function D
([

β u
xy
]
,
[
γv

xy
])

= ∑u∈H Hu
(
β u

xy + γu
xy
)

when
f uv
xy

Cxy
−β u

xy− γv
xy ≤ 0 for every com-

modity (u,v) ∈ C. This is because a dual problem minimizes this dual function, i.e.,

min
[β u

xy]∈R
|H|
+ ,[γv

xy]∈R
|H|
+

D
([

β u
xy
]
,
[
γv

xy
])

, resulting in the dual problem in (4.2.3), which

proves the lemma.

We use the dual problem in (4.2.3) to transform the robust optimization problem

in (4.1.3) into the following linear program:

Minimize η

Subject to ∑
u∈H

Hu
(
β

u
i j + γ

u
i j
)
≤ η ,∀(i, j) ∈ L

f uv
i j

Ci j
−β

u
i j− γ

v
i j ≤ 0 ,∀(u,v) ∈ C,∀(i, j) ∈ L

β
u
i j ∈ R+, γ

u
i j ∈ R+ ,∀u ∈H,∀(i, j) ∈ L

[ f uv
i j ] ∈ F .

(4.2.4)

Theorem 1. The robust oblivious routing formulation in (4.1.3) and the linear program

in (4.2.4) are equivalent.

Proof. The proof replaces the sub-problem in (4.2.2) with the dual problem in (4.2.3)

on the right-hand side of equation (4.2.1). Let gxy([ f uv
i j ]) represent the dual problem in

(4.2.3) of link (x,y) given routing variables [ f uv
i j ]. The replacement yields:

max
(i, j)∈L,
[tuv]∈T

∑
(u,v)∈C

tuv f uv
i j

Ci j
= max

(x,y)∈L
gxy([ f uv

i j ]).

Since the left-hand side of the above equation is the inner maximization of the oblivious

routing formulation in (4.1.3), it follows that the formulation is equivalent to

min
[ f uv

i j ]∈F
max

(x,y)∈L
gxy([ f uv

i j ]).
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The above min-max problem can be transformed into a linear program with an auxiliary

variable η as follows:

Minimize η

Subject to gxy([ f uv
i j ])≤ η ,∀(x,y) ∈ L

[ f uv
i j ] ∈ F .

Finally, replacing the dual problem gxy([ f uv
i j ]) with its objective function and constraints

in (4.2.3) gives the linear program in (4.2.4) and proves the theorem.

The implication of Theorem 1 is that an optimal oblivious routing solution of

the robust formulation in (4.1.3) can be obtained by solving the linear program in (4.2.4).

Since linear programming is solvable in polynomial time [25, 26], we can design optimal

oblivious routing in polynomial time for appropriate network sizes, in terms of variables

and constraints. However, the scales of datacenter networks could render the linear

program in (4.2.4) intractable in practice. The next section tackles this scalability issue.

4.3 Scalable Linear Program Formulation
This section tackles the scalability of the linear formulation in (4.2.4) for large-

scale datacenter networks. We exploit the repeated structures in a network topology to

scale the formulation. This idea is inspired by the work in [22], which is non-polynomial

time and has no routing-incapable nodes.

4.3.1 Automorphism in Datacenter Networks

The repeated structures in a datacenter network are captured by graph

automorphism. Graph automorphism is a mapping of nodes in a graph to the same set

of nodes in the same graph such that the new graph with the mapped nodes is similar

to the original graph [51]. In particular, the described automorphism preserves node

adjacency. We extend this automorphism to our network model by the definition of our

automorphism.

Definition 1. A mapping function φ : N → N is an automorphism if the following

conditions hold:
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Figure 4.2 Automorphism example from the simple network in Figure 4.1. Nodes in the right

network are nodes in the left network relabeled by the automorphism φ (n) = n−3

mod 12. Both networks have the same adjacency, link capacity distribution, node

types, and node capacity distribution.

1. Adjacency: (φ (i) ,φ ( j)) ∈ L, ∀(i, j) ∈ L.

2. Link capacity: Cφ(i)φ( j) =Ci j, ∀(i, j) ∈ L.

3. Type: φ (n) ∈ S , ∀n ∈ S and φ (n) ∈ P , ∀n ∈ P .

4. Node capacity: Hφ(n) = Hn, ∀n ∈N .

The automorphism in Definition 1 is illustrated in Figure 4.2. The first

condition ensures that the adjacency between nodes is preserved under the automorphism.

The second condition keeps the capacity of every link the same after the automorphism

mapping. The type and capacity of every node also stay the same under the automorphism

from the last two conditions.

Let Φ be the set of all automorphisms satisfying Definition 1. Since the

numbers of nodes and links in a network are finite, there are finite permutations, and the

cardinality of the set is finite, |Φ|< ∞. In addition, we define Φ̂ as the set of generators

that entirely generate the automorphism set Φ. This generator set can be obtained from

off-the-shelf software, such as nauty [52].

To obtain the generator set Φ̂, we encode the four properties in Defi-

nition 1 on a network topology as an undirected graph with colored vertices, the input

format for nauty [52]. Algorithm 1 summarizes the encoding process, and Figure 4.3

shows the graph constructed by the algorithm from the network in Figure 4.1. In the
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Algorithm 1: Graph construction for generator set Φ̂

Initialize a graph with a vertex set V and an edge set E

Initialize dictionaries Γ,W,W ′,M,M′ with values as colors

Initialize variables D,D′ with value as color

for n ∈N do
V ← V ∪{n}

if (I [n ∈ S] ,Hn) /∈W then
W [(I [n ∈ S] ,Hn)]← new color

Γ[n]←W [(I [n ∈ S] ,Hn)]

for (i, j) ∈ L do
Let n be a new vertex

V ← V ∪{n}

E ← E ∪{(i,n),(n, j)}

if Ci j /∈W ′ then
W ′[Ci j]← new color

Γ[n]←W ′[Ci j]

return a graph with sets V,E and dictionary Γ

algorithm, vertices associated with nodes having the same type and node capacity are

assigned the same color. Any two vertices associated with nodes having different types or

different capacities are given different colors. This construction ensures the preservation

of node type and node capacity in the generator set. For links in the network, each link

yields a new vertex with two edges, each connecting to the vertex associated with each

side of the link. Vertices associated with links having the same capacity are assigned

the same color. Any two vertices associated with links having different capacities are

given different colors. This construction ensures the properties on adjacency and link

capacity are enforced. The time complexity of Algorithm 1 is O(|N |+ |L|). Finally, the

constructed graph is input to nauty [52] to produce the generator set.

Next, we use the automorphism set Φ and its generator set Φ̂ to identify

a special optimal oblivious routing solution.
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Figure 4.3 A graph with colored vertices is constructed by Algorithm 1 from the simple network

in Figure 4.1.

4.3.2 Automorphism-invariant Optimal Solution

In this section, we show that the repeated structures in a datacenter

network lead to an optimal oblivious routing solution that also has repeated structures.

We first argue that the linear program in (4.2.4) has an optimal solution.

We know that the robust optimization in (4.1.3) aims to minimize the congestion ratio

over the traffic set, which is assumed to be nonempty, and the sum of all link capacities

in the network is finite. Therefore, the minimal congestion ratio exists. Since the linear

program in (4.2.4) is equivalent to the robust optimization in (4.1.3) by Theorem 1, it

must have an optimal solution. Let
(

η∗, [β u∗
i j ], [γ

u∗
i j ], [ f

uv∗
i j ]
)

be an optimal solution of the

linear program in (4.2.4). We show that another optimal solution can be constructed from

an automorphism.

Lemma 2. For any φ ∈Φ, a solution
(

η , [β u
i j], [γ

u
i j], [ f

uv
i j ]
)

is an optimal solution of the

linear program in (4.2.4) when

η = η
∗, β

u
i j = β

φ(u)∗
φ(i)φ( j), γ

u
i j = γ

φ(u)∗
φ(i)φ( j), f uv

i j = f φ(u)φ(v)∗
φ(i)φ( j) .

Proof. Fix an automorphism φ ∈ Φ. Since η = η∗, the objective cost under the new

solution equals the optimal objective cost. We then need to show that the solution,

constructed from the automorphism, is feasible and satisfies all constraints in (4.2.4) and

(4.1.2). We begin with the domains of variables β u
i j and γu

i j in (4.2.4) and variables f uv
i j in

(4.1.2). These domains are non-negative reals, so the variables of the constructed solution

are in the same domains. Next, we consider the constraints in (4.2.4).
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Considering the first constraint in (4.2.4) with link (i, j), we have that

∑
u∈H

Hu
(
β

u
i j + γ

u
i j
)
= ∑

u∈H
Hφ(u)

(
β

φ(u)∗
φ(i)φ( j)+ γ

φ(u)∗
φ(i)φ( j)

)
= ∑

u∈H
Hu

(
β

u∗
φ(i)φ( j)+ γ

u∗
φ(i)φ( j)

)
≤ η

∗ = η .

The first equality substitutes the solution and uses the node capacity property in Defini-

tion 1. Reindexing u ∈H leads to the second equality. The last inequality holds because

the constraint associated with link (φ (i) ,φ ( j)) holds under the optimal solution. Thus,

the first constraint in (4.2.4) is satisfied.

Considering the second constraint in (4.2.4) with commodity (u,v) and

link (i, j), we have that

f uv
i j

Ci j
−β

u
i j− γ

v
i j =

f φ(u)φ(v)∗
φ(i)φ( j)

Cφ(i)φ( j)
−β

φ(u)∗
φ(i)φ( j)− γ

φ(v)∗
φ(i)φ( j) ≤ 0.

The first equality substitutes the solution and uses the link capacity property in Defi-

nition 1. The last inequality holds because the constraint associated with commodity

(φ (u) ,φ (v)) and link (φ (i) ,φ ( j)) holds under the optimal solution. Thus, the second

constraint in (4.2.4) is satisfied.

We then consider the constraints in (4.1.2). Considering the second

constraint with commodity (u,v) ∈ C and link (i, j) ∈ N ×P−v, we have that f uv
i j =

f φ(u)φ(v)∗
φ(i)φ( j) . Since node j is routing-incapable and j ̸= v, node φ ( j) is also routing-

incapable and φ ( j) ̸= φ (v) from Definition 1. It follows that f φ(u)φ(v)∗
φ(i)φ( j) = 0 because

the optimal share of commodity (φ (u) ,φ (v)) never routes traffic over link (φ (i) ,φ ( j))

as φ ( j) ∈ P−φ(v). Therefore, we have f uv
i j = 0, and the second constraint in (4.1.2) is

satisfied.

Considering the third constraint in (4.1.2) with commodity (u,v) ∈

C and node i ∈ N , we have that f uv
iu = f φ(u)φ(v)∗

φ(i)φ(u) = 0 because the optimal share of

commodity (φ (u) ,φ (v)) never routes traffic back to the traffic’s source node. A similar

argument can be applied to the constraint f uv
vi = 0 as the optimal share of commodity

(φ (u) ,φ (v)) never routes traffic away from the traffic’s destination node. Therefore, The

third constraint in (4.1.2) is satisfied. For the first constraint in (4.1.2), the proof that the

constraint is satisfied is similar to the proof in [22] and is omitted for brevity. Thus, it

holds that [ f uv
i j ] ∈ F .
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Altogether, the solution achieves the same optimal objective cost and is

feasible. It must be an optimal solution.

The implication of Lemma 2 is that we can construct multiple optimal

solutions from an optimal solution and the automorphism set. Next, we use these optimal

solutions to identify an optimal solution with repetitive variables.

Theorem 2. There exists an automorphism-invariant solution
(
η̂ , [β̂ u

i j], [γ̂
u
i j], [ f̂

uv
i j ]
)

that

is optimal for the linear program in (4.2.4) and satisfies:

f̂ uv
i j = f̂ φ(u)φ(v)

φ(i)φ( j) , β̂
u
i j = β̂

φ(u)
φ(i)φ( j), γ̂

u
i j = γ̂

φ(u)
φ(i)φ( j), ∀φ ∈Φ.

Proof. We first construct a solution before showing that it is optimal and satisfies the

automorphism-invariant property. Let
(
η̂ , [β̂ u

i j], [γ̂
u
i j], [ f̂

uv
i j ]
)

be a solution such that

η̂ = η
∗, f̂ uv

i j =
1
|Φ| ∑

φ∈Φ

f φ(u)φ(v)∗
φ(i)φ( j) ,

β̂
u
i j =

1
|Φ| ∑

φ∈Φ

β
φ(u)∗
φ(i)φ( j), γ̂

u
i j =

1
|Φ| ∑

φ∈Φ

γ
φ(u)∗
φ(i)φ( j),

where
(
η∗, [β u∗

i j ], [γ
u∗
i j ], [ f

uv∗
i j ]
)

is an existing optimal solution.

Since η̂ =η∗, the objective cost under the solution equals to the optimal

cost. Next, we show that the solution is feasible.

The linearity in the construction of the solution implies that i) the

domains of variables β u
i j and γu

i j in (4.2.4), ii) the domains of variables f uv
i j in (4.1.2),

and iii) the second and third constraints in (4.1.2) are satisfied. The proof that the first

constraint in (4.1.2) is satisfied is similar to the proof in [22] and is omitted for brevity.

We next consider the other constraints in (4.2.4).

The first constraint in (4.2.4) with link (i, j) gives

∑
u∈H

Hu

[
1
|Φ| ∑

φ∈Φ

β
φ(u)∗
φ(i)φ( j)+

1
|Φ| ∑

φ∈Φ

γ
φ(u)∗
φ(i)φ( j)

]

=
1
|Φ| ∑

φ∈Φ

∑
u∈H

Hφ(u)

(
β

φ(u)∗
φ(i)φ( j)+ γ

φ(u)∗
φ(i)φ( j)

)
≤ η

∗.

The first equality uses the node capacity property in Definition 1. The last inequality uses

that the inner summation is at most η∗ since the optimal solution satisfies the constraint

with link (φ (i) ,φ ( j)). Therefore, the constraint is satisfied.
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The second constraint in (4.2.4) with commodity (u,v) and link (i, j)

gives

1
Ci j |Φ| ∑

φ∈Φ

f φ(u)φ(v)∗
φ(i)φ( j) −

1
|Φ| ∑

φ∈Φ

β
φ(u)∗
φ(i)φ( j)−

1
|Φ| ∑

φ∈Φ

γ
φ(v)∗
φ(i)φ( j)

=
1
|Φ| ∑

φ∈Φ

 f φ(u)φ(v)∗
φ(i)φ( j)

Cφ(i)φ( j)
−β

φ(u)∗
φ(i)φ( j)− γ

φ(v)∗
φ(i)φ( j)

≤ 0.

The first equality uses the link capacity property in Definition 1. The last inequality uses

the fact that the expression in the summation is non-positive since the optimal solution

satisfies the constraint with commodity (φ (u) ,φ (v)) and link (φ (i) ,φ ( j)). Therefore,

the constraint is satisfied. Altogether, the solution is feasible and optimal.

Finally, we show the solution satisfies the automorphism-invariant

property. We first consider β̂ u
i j and any φ ∈Φ:

β̂
φ(u)
φ(i)φ( j) =

1
|Φ| ∑

φ ′∈Φ

β
φ ′(φ(u))∗
φ ′(φ(i))φ ′(φ( j))

=
1
|Φ| ∑

φ ′′∈Φ

β
φ ′′(u)∗
φ ′′(i)φ ′′( j) = β̂

u
i j.

The second equality used the fact that the set of all automorphism mapping Φ is a group

under the operation of function composition4 and the summation is over the entire set.

Therefore, every variable β̂ u
i j is automorphism-invariant. Similar arguments prove the

automorphism-invariant property of variables f̂ uv
i j and γ̂u

i j and are omitted. Thus, the

solution is automorphism-invariant. This proves the theorem.

The implication of Theorem 2 is that the linear program in (4.2.4)

always has an optimal solution whose variables form groups. Every variable in each

group takes the same value, i.e., β̂ u
i j = β

φ(u)
φ(i)φ( j) for all φ ∈ Φ. We use this insight to

formulate a new linear program targeting the automorphism-invariant optimal solution

to improve scalability. This linear program has a significantly reduced problem size,

allowing it to scale to larger network sizes.

4The composition of two automorphism mapping functions gives another automorphism mapping in the

same set Φ.
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4.3.3 Representative Variables

We first identify how variables [β u
i j], [γ

u
i j], [ f

uv
i j ] of the linear program in

(4.2.4) form groups, so the variables in each group can be represented by a representative

variable. The challenge of this identification is its combinatorial nature.

We observe from Theorem 2 that the variables [β u
i j] and [γu

i j] share the

same group relations as they share the same index set,H×L. We therefore develop an

efficient algorithm to group the variables based on the generator set Φ̂ as summarized in

Algorithm 2. The algorithm searches over the index set. It takes an index from the set

and utilizes the generator set to find all indices sharing the same group. Once a group is

formed, the algorithm takes an unvisited index and continues the search process until all

groups are formed. The time complexity of Algorithm 2 is O(|H| |L| |Φ̂|), since every

index is visited once and exactly |Φ̂| indices are searched over per visited index. Notice

that using the generator set is more efficient than the entire automorphism set, which is

exponentially large.

The Algorithm 2 outputs the representative index set Ĝ and the dictio-

nary ω containing automorphisms that can map each variable to its representative. In

particular, let β̂ u
i j and γ̂u

i j be representative variables for every (u, i, j) ∈ Ĝ. They represent

variables [β u
i j] and [γu

i j] of the linear program in (4.2.4) as follows:

β
u
i j

represented by
========⇒ ϕ

[
β

u
i j
]
= β̂

φ(u)
φ(i)φ( j) where φ = ω [u, i, j]

γ
u
i j

represented by
========⇒ ϕ

[
γ

u
i j
]
= γ̂

φ(u)
φ(i)φ( j) where φ = ω [u, i, j]

(4.3.1)

for every (u, i, j) ∈H×L. We use ϕ[x] to denote the representative of x.

For the share variables [ f uv
i j ], their groups can be obtained from Al-

gorithms 2 and 3 in [22], whose multi-commodity formulation includes a related con-

servation constraint similar to ours in (4.1.2). Algorithm 2 in [22] outputs the set of

representative commodities, Ĉ, and a dictionary π containing automorphisms that can

map each commodity to its representative commodity. For each representative commodity

(u,v) ∈ Ĉ, Algorithm 3 in [22] outputs the set of representative links of share variables,

L̂uv, and a dictionary σuv containing automorphisms that can map each share variable

to its representative. In particular, let f̂ uv
i j be a representative share variable for every

(u,v) ∈ Ĉ and every (i, j) ∈ L̂uv. They represent shares [ f uv
i j ] of the linear program in
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Algorithm 2: Identification of [β̂ u
i j] and [γ̂u

i j]

Initialize empty sets Q,Z, Ĝ

Initialize dictionaries D,ω

for (u, i, j) ∈H×L do

if (u, i, j) ∈ Z then
continue

Ĝ ← Ĝ ∪{(u, i, j)}

D[u, i, j]← φidentity

Q←Q∪{(u, i, j)}

while Q is not empty do
Pop (a,b,c) from Q

Z ←Z∪{(a,b,c)}

for φ ∈ Φ̂ do

if (φ (a) ,φ (b) ,φ (c)) /∈ Z then
Q←Q∪{(φ (a) ,φ (b) ,φ (c))}

D[φ (a) ,φ (b) ,φ (c)]← φ (D[a,b,c])

for (u, i, j) ∈H×L do
ω [u, i, j]← (D[u, i, j])−1

return representative index set Ĝ and dictionary ω

Algorithm 3: Construction of index set M̂
Initialize empty sets Z,M̂

for (i, j) ∈ L do
Let e = (aui j,bui j)(u,i, j)∈Ĝ where aui j and bui j are respectively the counts of

representative β̂ u
i j and γ̂u

i j in ∑n∈H Hn

(
ϕ

[
β n

i j

]
+ϕ

[
γn

i j

])
if e ∈ Z then

continue
M̂← M̂∪{(i, j)}

Z ←Z ∪{e}
return representative constraint indices M̂
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(4.2.4) as follows:

f uv
i j

represented by
========⇒ ϕ

[
f uv
i j
]
= f̂ φ(u)φ(v)

φ ′(φ(i))φ ′(φ( j)), (4.3.2)

where φ = π [u,v] , and φ ′ = σφ(u)φ(v) [i, j] for every (u,v, i, j) ∈ C×L.

These representatives [β̂ u
i j], [γ̂

u
i j], [ f̂

uv
i j ] significantly reduce the variables

in (4.2.4), resulting in a scalable linear program.

4.3.4 Automorphism-invariant Formulation

Finally, we formulate the scalable linear program designed to scale to

larger network sizes as follows:

Minimize η

Subject to ∑
u∈H

Hu
(
ϕ
[
β

u
i j
]
+ϕ

[
γ

u
i j
])
≤ η ,∀(i, j) ∈ M̂

f̂ uv
i j

Ci j
−ϕ

[
β

u
i j
]
−ϕ

[
γ

v
i j
]
≤ 0

,∀(u,v) ∈ Ĉ,∀(i, j) ∈ L̂uv

β̂
u
i j ∈ R+, γ̂

u
i j ∈ R+,∀(u, i, j) ∈ Ĝ

[ f̂ uv
i j ] ∈ F̂ ,

(4.3.3)

where the set F̂ is defined in (4.3.4).

F̂ =

∑ j∈O(i) f̂ uv
i j −∑ j∈I(i) f̂ uv

ji = I [i = u]− I [i = v]

,∀(u,v) ∈ Ĉ,∀i ∈N

f̂ uv
i j = 0 ,∀(u,v) ∈ Ĉ,∀(i, j) ∈ L̂uv∩ (N ×P−v)

f̂ uv
iu = f̂ uv

vi = 0,∀(u,v) ∈ Ĉ,∀(i,u),(v, i) ∈ L̂uv

f̂ uv
i j ∈ R+ ,∀(u,v) ∈ Ĉ,∀(i, j) ∈ L̂uv


(4.3.4)

The set M̂ in (4.3.3) is constructed by Algorithm 3 to remove unnecessary constraints,

causing intractability for large networks.

The scalable linear program in (4.3.3) designs an optimal oblivious

routing solution in polynomial time for large networks. As shown in Chapter 5, it is faster

and more scalable than the state-of-the-art technique [22]. While this result achieves
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the best of both worlds given the set of all traffic matrices, one may want to design the

optimal oblivious routing for other traffic sets. The next section generalizes our approach

to support such situations.

4.4 Generalized Traffic Model
Some datacenter administrators have the knowledge of the traffic demand ranges

or may want to tread commodities differently [21, 35]. In this section, we extend our

approach to support customized traffic models such that the traffic demand of commodity

(u,v) is restricted to the range [tuv
min, t

uv
max] where tuv

min and tuv
max denote respective the

minimum and maximum for every commodity (u,v) ∈ C. Given the ranges, we subject

the oblivious routing optimization in (4.1.3) to the following generalized traffic set T ′

(instead of T ):

T ′ =



∑v∈H−u tuv ≤ Hu ,∀u ∈H

∑u∈H−v tuv ≤ Hv ,∀v ∈H

tuv
min ≤ tuv ≤ tuv

max ,∀(u,v) ∈ C

tuv ∈ R+ ,∀(u,v) ∈ C


. (4.4.1)

Following the transformation technique in Section 4.2 yields the linear program

in (4.4.2) with dual variables [β u
i j], [γ

u
i j], [λ

uv
i j ], and [µuv

i j ], where the last two groups of

variables correspond to the range constraint, tuv
min ≤ tuv ≤ tuv

max introduced in (4.4.1).

Minimize η

Subject to ∑
u∈H

Hu
(
β

u
i j + γ

u
i j
)
+ ∑

(u,v)∈C
tuv
max λ

uv
i j

− ∑
(u,v)∈C

tuv
min µ

uv
i j ≤ η ,∀(i, j) ∈ L

f uv
i j

Ci j
−β

u
i j− γ

v
i j−λ

uv
i j +µ

uv
i j ≤ 0

,∀(u,v) ∈ C,∀(i, j) ∈ L

β
u
i j ∈ R+, γ

u
i j ∈ R+,∀u ∈H,∀(i, j) ∈ L

λ
uv
i j ∈ R+, µ

uv
i j ∈ R+,∀(u,v) ∈ C,∀(i, j) ∈ L

[ f uv
i j ] ∈ F .

(4.4.2)

Similar to Section 4.3, the scalability of the above linear program is further
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Figure 4.4 How vertices and edges are added between commodities (u,v) and (v,u) to accommo-

date their range constraints.

improved by exploiting the repeated structures in the network and formulation. The

automorphism in Definition 1 is added with 1) preservation of the minimum demand:

tφ(u)φ(v)
min = tuv

min,∀(u,v) ∈ C and 2) preservation of the maximum demand: tφ(u)φ(v)
max =

tuv
max,∀(u,v) ∈ C, to accommodate the range constraint in (4.4.1). The generators of

the modified definition can be obtained by adding colored vertices and edges for each

commodity to Algorithm 1 as shown in Figure 4.4. In particular, we introduce two new

vertices and three edges for the maximum demand preservation of commodity (u,v). The

two vertices represent the maximum demand and its direction. The first edge connects

source vertex u to the directional vertex, the second edge connects both vertices, and

the third edge connects the demand vertex to destination vertex v. Any two maximum

demand vertices having the same demand value are assigned the same color, and different

colors are assigned to vertices having different demand values. All directional vertices

are assigned an identical color for every commodity. Vertices and edges for minimum

demand preservation are added in a similar manner. Notice that, the time complexity of

modified Algorithm 1 is O(|N |+ |L|+ |C|).

It is worth mentioning that when the maximum and minimum demands are

symmetry, such that tuv
max = tvu

max and tuv
min = tvu

min,∀(u,v) ∈ C, a generator set can be

obtained by a graph constructed from Algorithm 1 without any modification.

With the above definition of automorphism, let Φ′ and Φ̂′ be the sets of auto-

morphism and generators. It is possible to show that some optimal solution to the linear

program in (4.4.2) has repeated structures. We state the result below, which can be proved

by techniques used in Lemma 2 and Theorem 2.

Theorem 3. There exists an automorphism-invariant solution
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(
η̂ , [β̂ u

i j], [γ̂
u
i j], [λ̂

uv
i j ], [µ̂

uv
i j ], [ f̂

uv
i j ]
)

that is optimal for the linear program in (4.4.2)

and satisfies:

f̂ uv
i j = f̂ φ(u)φ(v)

φ(i)φ( j) , β̂
u
i j = β̂

φ(u)
φ(i)φ( j), γ̂

u
i j = γ̂

φ(u)
φ(i)φ( j),

λ̂
uv
i j = λ̂

φ(u)φ(v)
φ(i)φ( j) , µ̂

uv
i j = µ̂

φ(u)φ(v)
φ(i)φ( j) , ∀φ ∈Φ

′.

Theorem 3 implies that variables in an automorphism-invariant solution form

groups, and every variable in each group takes the same value. Comparing Theorem 3

with Theorem 2, we first observe that variables [β̂ u
i j], [γ̂

u
i j] and [ f̂ uv

i j ] in both theorems

form groups using the same formation. Therefore, they represent variables [β u
i j], [γ

u
i j] and

[ f uv
i j ] of the linear program in (4.4.2) as the mappings in (4.4.3) and (4.3.2) respectively.

Secondly, we observe that the variables [λ uv
i j ], [µ

uv
i j ] share the same group relations as

they share the same index set, C ×L. Therefore, we adapt Algorithm 2 for grouping the

variables [λ uv
i j ], [µ

uv
i j ] by searching over the index set, C×L, instead. Notice that, the time

complexity of grouping the variables [λ uv
i j ] and [µuv

i j ] is O(|C| |L| |Φ̂|). Let λ̂ uv
i j and µ̂uv

i j

be representative variables for every (u,v, i, j) ∈ C×L. These representatives represent

variables [λ uv
i j ] and [µuv

i j ] of the linear program in (4.4.2) as follows:

λ
uv
i j

represented by
========⇒ ϕ

[
λ

uv
i j
]
= λ̂

φ(u)φ(v)
φ(i)φ( j) where φ = ω [u,v, i, j]

µ
uv
i j

represented by
========⇒ ϕ

[
µ

uv
i j
]
= µ̂

φ(u)φ(v)
φ(i)φ( j) where φ = ω [u,v, i, j]

(4.4.3)

for every (u,v, i, j) ∈ C×L. We use ϕ[x] to denote the representative of x.

Finally, we formulate the scalable linear program that considers a generalized

traffic set T ′ in (4.4.1) as follows:
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Minimize η

Subject to ∑
u∈H

Hu
(
ϕ
[
β

u
i j
]
+ϕ

[
γ

u
i j
])

+ ∑
(u,v)∈C

tuv
max ϕ

[
λ

uv
i j
]

− ∑
(u,v)∈C

tuv
min ϕ

[
µ

uv
i j
]
≤ η ,∀(i, j) ∈ M̂′

f̂ uv
i j

Ci j
−ϕ

[
β

u
i j
]
−ϕ

[
γ

v
i j
]
− λ̂

uv
i j + µ̂

uv
i j ≤ 0

,∀(u,v) ∈ Ĉ,∀(i, j) ∈ L̂uv

β̂
u
i j ∈ R+, γ̂

u
i j ∈ R+,∀(u, i, j) ∈ Ĝ

λ̂
uv
i j ∈ R+, µ̂

uv
i j ∈ R+,∀(u,v) ∈ Ĉ,∀(i, j) ∈ L̂uv

[ f̂ uv
i j ] ∈ F̂ ,

(4.4.4)

where the sets F̂ is defined in (4.3.4). The set M̂′ in (4.4.4) is constructed by ad-

justing Algorithm 3 to include only one link from a group of links that have iden-

tical counts of representatives ([β̂ u
i j], [γ̂

u
i j], [λ̂

uv
i j ], [µ̂

uv
i j ]) in ∑n∈H Hn(ϕ

[
β n

i j

]
+ϕ

[
γn

i j

]
)+

∑(u,v)∈C tuv
maxϕ

[
λ uv

i j

]
−∑(u,v)∈C tuv

minϕ

[
µuv

i j

]
.

To conclude this section, when we have the knowledge of demand ranges, the

scalable linear program in (4.4.4) gives an optimal oblivious routing solution with respect

to the demand ranges. This optimal solution is no worse than a solution from (4.3.3),

which ignores the demand ranges. It is worth noting that when the demand range is

loosened to [0,∞) for every commodity, the optimal solution from the linear program in

(4.4.4) becomes identical to the optimal solution from (4.3.3). The empirical result in

Section 5.7 also confirms this insight. The next section describes how an optimal solution

is compacted for practicality.

4.5 Compact Forwarding Rules
An optimal oblivious routing solution, obtained from the scalable formulation

either in (4.3.3) or (4.4.4), could be distributively deployed on switches in a datacenter

network. Every switch decides how traffic is split over to next-hop switches for each
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Figure 4.5 Optimal oblivious routing solution of commodities (0,4) and (0,10), which have the

same representative, is presented. The black arrows represent similar split weights

that can be grouped at each corresponding node.

commodity5. In particular, switch i splits the traffic of commodity (u,v) to next-hop

switch j over link (i, j) with weight

wuv
i j =

f uv
i j

∑k∈O(i) f uv
ik

,∀(u,v) ∈ C,∀i ∈N ,∀ j ∈ O(i). (4.5.1)

These weights could be configured into programmable switches with flow

splitting capability in the form of forwarding rules [27, 29, 30]. However, a switch

has limited memory for storing the rules from multiple commodities in a large datacenter

network. This practical limitation could hinder the deployment of the optimal oblivious

routing solution.

We observe that some rules, derived from the commodities having the same

representative, are similar as shown in Figure 4.5. We use this insight to group the

forwarding rules in order to reduce memory requirement. Algorithm 4 summarized our

grouping method. For each node in a network, the commodities having the same represen-

tative are grouped by the similarity of split weights, i.e., (i, j,ϕ
[

f xy
i j

]
)(i, j)∈O(n) (ignoring

the common denominator in (4.5.1)). The commodities having similar split weights form

a group, so one collection of forwarding rules is sufficient for these commodities. The

algorithm outputs the collection of grouped rules, {Wn}n∈N . For node n, the grouped

rules are stored in the dictionary Wn whose key e represents a collection of split weights

and the value Wn[e] is the set of commodities using the weights. The time complexity of

Algorithm 4 is O(|N | |C|). Note that Algorithm 4 is highly parallelizable as the grouping

5TCP reordering effect could be avoided by ensuring that packets belonging to the same TCP or UDP

flow are routed along the same path, which is out of scope for this thesis [53, 54].
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process can be parallelized for each node.

Algorithm 4: Forward-rule grouping
Initialize empty set Q

Initialize dictionary {Wn}n∈N

for n ∈N do
Q←Q∪{n}

for (u,v) ∈ Ĉ do

for (x,y) represented by (u,v) do

Let e = (i, j,ϕ
[

f xy
i j

]
)(i, j)∈O(n)

if e /∈Wn then
Wn[e]← /0

Wn[e]←Wn[e]∪{(x,y)}

return Grouped forwarding rules {Wn}n∈N

In short, Algorithm 4 utilizes the repeated structures in the optimal oblivious

routing solution, which is automorphism invariant, to reduce memory requirement for

the deployment of forwarding rules in real-world switches. In addition, if the reduced

requirement exceeds the available memory of a switch, an approximation technique,

such as [27], could be applied to our grouped rules to trade-off between optimality and

available memory. In other words, our grouping method circumvents the unnecessary

trade-off when it is avoidable.

39



Chapter 5

Experimental Results

In this chapter, our scalable linear program in (4.3.3) is evaluated over various

datacenter network topologies and sizes. Its scalability is evaluated in terms of computa-

tion times (Section 5.3) and problem sizes (Section 5.4). The efficiency of our grouping

method in Algorithm 4 is evaluated for the same topologies (Section 5.5). Ultimately, we

demonstrate our work’s applicability to an existing server-centric topology (Section 5.6)

and the presence of traffic demand knowledge (Section 5.7).

Every evaluation is executed on a commodity computer with an Intel Core i9-

12900K processor and 128GB memory. All linear programs are solved by Gurobi [37].

We use off-the-shelf software, nauty [52] to compute generator sets.

5.1 Topology Setting and Brief Background
We motivate the topologies used in our evaluation as follows. FatClique is

designed for low-cost manageability, regarding topology deployment and expansion [2].

SlimFly focuses on throughput performance by the use of low-diameter graphs with

high-radix switches [10]. BCube aims for shipping-container-based datacenters [11].

FatClique and SlimFly follow the server-switch architecture, while BCube belongs to the

server-centric architecture.

For topology setting, we intend to provide the example demonstrating ability

of this work to design optimal routing for larger networks, comparing it with existing

methods. These topologies are constructed as follows. For FatClique, we set the numbers

of switches in a sub-block, sub-blocks in a block, and blocks to an identical value. We

vary this value from 2 to 12. For SlimFly, we use its provided topologies with the number

of network radices ranging from 5 to 43. For BCube, each topology is built from 4-port

switches, and we vary the number of levels of switches from 2 to 5. It is worth noting

that the size of the network increases as the parameter value increases. The maximum
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Figure 5.1 The optimal oblivious routing solution of the network in Figure 4.1. The four com-

modities correspond to all combinations of node types.

number of nodes in the topologies generated by these settings is 2304.

5.2 Correctness of Optimal Solutions
In every evaluation, we confirm the correctness of the optimal solutions obtained

from (4.3.3) by comparing them with the solutions from the state-of-the-art technique

in [22]. When the technique fails to compute solutions due to computational resource

limitations, we adopt another technique in [55] to validate our solutions.

Moreover, as shown in Figure 5.1, the scalable linear program in (4.3.3) handles

routing-incapable nodes correctly for the simple network in Figure 4.1. Every routing-

incapable node unrelated to a considered commodity is not involved in the commodity’s

routing.

5.3 Scalability in Terms of Computation Time
We vary the sizes of FatClique, SlimFly, and BCube. We record the optimization

times of our scalable formulation in (4.3.3), the state-of-the-art technique in [22], and the

other linear program in [21]. The limit of the optimization time is set to 24 hours. The

results are plotted in Figure 5.2. Our work takes much less time to find optimal routing

solutions than the other techniques for all topologies and all sizes. The work in [22]

scales well for FatClique and BCube but fails to obtain optimal routing solutions within

the time limit for SlimFly beyond 98 nodes. Due to insufficient computing memory, the

linear program in [21] cannot scale beyond 112 nodes for all considered topologies.

41



0 500 1000 1500 2000 2500
Number of nodes

0

6

12

18

24

Ti
m

e 
(h

ou
r)

FatClique by [21]
SlimFly by [21]
BCube by [21]

FatClique by [22]
SlimFly by [22]
BCube by [22]

FatClique by this work
SlimFly by this work
BCube by this work

Figure 5.2 The optimization time at different sizes of FatClique, SlimFly, and BCube. The

maximum times of the scalable formulation are 0.008 sec. for FatClique, 2.97 min.

for SlimFly, and 0.026 sec. for BCube.
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Figure 5.3 The numbers of variables and constraints at various sizes of FatClique. For the largest

FatClique, the numbers of variables and constraints in the scalable formulation are

160 and 5326 respectively.

5.4 Scalability in Terms of Variables and Constraints
Figure 5.3 shows the numbers of variables and constraints at different sizes of

FatClique from 8 to 1728 nodes, which follows the same evaluation in [22]. Our scalable

formulation in (4.3.3) is much leaner than the other techniques regarding the numbers of

variables and constraints. While the linear program in [21] can obtain an optimal routing

solution in polynomial time, its formulation size grows exponentially as the topology

size increases, resulting in the insufficient memory issue in Section 5.3. Because the

state-of-the-art technique in [22] iteratively solves two linear programs, we only count

the total numbers of variables and constraints from the two programs at the first iteration

without additional constraints from later iterations. Nevertheless, their formulation size

(i.e., the numbers of variables and constraints) is still larger than ours.
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Figure 5.4 The space-saving percentage at different sizes of FatClique, SlimFly, and BCube. Each

mean value is computed from all nodes in a topology. The maximum and minimum

values are represented by horizontal bars.

5.5 Reduction of Forwarding Rules
The efficiency of the forwarding rule grouping from Algorithm 4 is measured by

the percentage of space saving, which is the proportion of rule reduction to non-grouped

rules. Figure 5.4 shows the space saving at various sizes of FatClique, SlimFly, and

BCube. Our grouping method reduces more than 90% of the non-grouped forwarding

rules under FatClique with no less than 216 nodes and under BCube with no less than

112 nodes. The space saving for SlimFly highly depends on topology configuration.

5.6 Possible Application for BCube
BCube employs dynamic source routing to utilize multi-path capacity. Each

source selects the best-quality path from its candidate paths, based on the current max-

imum available bandwidth. This approach constantly measures available bandwidth,

introduces complexity, and may need specialized hardware and network stack. Instead,

one could employ the oblivious routing approach, such as ECMP routing which is easy

to implement, on BCube for simpler production.

To illustrate the network performance improvement Table 5.1 shows the results

of our optimal oblivious routing solution and ECMP routing, which is an oblivious

routing with equal split. The optimal solution achieves a performance improvement of

1.8× to 6.7× in terms of the maximum congestion ratio over the equal split.
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Table 5.1 The maximum congestion ratio in BCube with oblivious routing

BCube Maximum congestion ratio

#Nodes Our work Equal split Improvement

24 2.50 4.50 1.80x

112 4.00 11.49 2.87x

512 5.50 21.50 3.91x

2304 6.97 47.19 6.77x

5.7 Performance Gain with Insights about Traffic Demand
In practice, some datacenter administrator team has an insight into traffic de-

mands occurring in a datacenter network. This insight could come from historical

measurements or capacity planning. For example, Google observes that the actual traffic

demands in their datacenter networks can be well approximated by the Gravity model [35].

Therefore, one could deploy an optimal routing solution from the method in Section 4.4

with the knowledge of demand ranges.

In this experiment, we assume that traffic in a datacenter network follows the

Gravity model where the base demand of commodity (u,v) is tuv
base = HuHv/∑k∈H Hk.

Let δ be a non-negative margin parameter. The demand range of commodity (u,v) in the

generalized traffic set T ′ in (4.4.1) is set to [tuv
base/δ , tuv

baseδ ] for every commodity.

When the margin parameter δ increases from 1 to 10, where a larger margin

parameter corresponds to a more relax demand range, the maximum congestion ratio

as the results of the routing solutions from the scalable linear programs in (4.4.4) and

(4.3.3) (with and without the knowledge of traffic ranges) is observed. Figures 5.5 and 5.6

show the results for the toy topology and BCube respectively. Note that lower maximum

congestion ratio values indicate more efficient resource utilization, and therefore are

preferred. We first observe that an optimal solution from the scalable linear program

without the knowledge of traffic ranges underperforms the other solution obtained with

the knowledge. Besides, the differences between the two routing solutions get smaller

when the range is more relaxed, as the margin parameter becomes larger. In short, the
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Figure 5.5 The maximum congestion ratio obtained from the routing solutions designed with and

without the knowledge of traffic ranges under the Toy topology in Figure 4.1.
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Figure 5.6 The maximum congestion ratio obtained from the routing solutions designed with and

without the knowledge of traffic ranges under BCube topology with 512 nodes.

knowledge of traffic ranges can improve the performance of the optimal oblivious routing

solution designed by our method in (4.4.4).
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
This thesis proposes a polynomial-time process for designing optimal compact

oblivious routing for datacenter networks. In this process, an optimal oblivious routing

solution is designed by solving a scalable linear program, derived from the transformation

of a robust optimization problem and the exploitation of repeated network structures.

After obtaining an optimal routing solution, the process compacts the forwarding rules

converted from the optimal solution to reduce memory requirements for real-world

deployment. Additionally, the design process is extended to accommodate a more

generalized traffic model when the knowledge of the traffic demand ranges is available.

6.2 Potential Future Works
Topology Asymmetry: Topology asymmetry may arise, either being innate by

design (e.g., Jellyfish [4], Scafida [56]) or due to several reasons, such as heterogeneous

link/node capacity and network failure (specifically, link or switch failure). This asym-

metry diminishes the advantage gained from exploiting repeated structures for scalability

and compactness. Hence, alternative techniques to achieve scalability and compactness

in cases of topological asymmetry can be explored in future studies.

Network Failure: When network failures occur in the network, the topology

changes. The current routing solution may no longer be optimal, so the entire design

process needs to be recomputed, which takes a considerable amount of time. Therefore, it

would be a valuable opportunity to further study designing optimal oblivious routing that

is also robust against network failure scenarios. In addition, the changed topology may

lead to asymmetry, diminishing the advantage gained from exploiting repeated structures.



Computation speed-up: Even using the scalable linear program can yield

promising solve times. However, solving this linear program may take longer than

expected due to various factors, such as topology asymmetry and the huge scale of

networks. This poses a crucial challenge, as it may exceed acceptable computation times

(e.g., longer than one month). One possible solution is to trade off between optimality

and computation speed-up [57].

Traffic Model From Real-world Measurement: In practice, datacenter net-

work administrators frequently measure and record historical traffic demands for further

analysis and management purposes. With this historical data, one can gain insights into

the expected traffic demands, which are represented by the set of all convex combinations

of historical traffic demands [58]. This would be a valuable opportunity to further study

on how to utilize these insights in designing optimal oblivious routing.
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